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Abstract. This paper deals witexponential neighborhoodsr combinatorial optimization problems. Ex-
ponential neighborhoods are large sets of feasible solutions whose size grows exponentially with the input
length. We are especially interested in exponential neighborhoods over which the TSP (respectively, the QAP)
can be solved in polynomial time, and we investigate combinatorial and algorithmical questions related to
such neighborhoods.

First, we perform a careful study of exponential neighborhoods for the TSP. We investigate neighbor-
hoods that can be defined in a simple way via assignments, matchings in bipartite graphs, partial orders,
trees and other combinatorial structures. We identify several properties of these combinatorial structures that
lead to polynomial time optimization algorithms, and we also provide variants that slightly violate these
properties and lead to NP-complete optimization problems. Whereas it is relatively easy to find exponential
neighborhoods over which the TSP can be solved in polynomial time, the corresponding situation for the QAP
looks pretty hopelesdEvery exponential neighborhood that is considered in this paparablyleads to an
NP-complete optimization problem for the QAP.

Key words. neighborhood — local search — search problem — Travelling Salesman Problem — Quadratic
Assignment Problem — polynomial time algorithm — NP-completeness — combinatorial optimization

1. Introduction

In this paper, we deal witbptimization problemsf the following form: An underly-
ing cost functionCosT : S, — R assigns to every permutation a non-negative cost
(throughoutthe paper, we will denote Bythe set of all permutations ¢, 2, ... , n}).
The goal of the optimization problem is to identify a permutatioat which the func-
tion CosT(-) takes its minimum. Two well-known and fundamental problems of this
type in combinatorial optimization are tfieavelling Salesman Proble(i SP) and the
Quadratic Assignment Proble(@AP).

In the TSP, the objective is to find for a givenx n distance matribxC = (Gij)
a permutationr € S, that minimizes the cost function

n-1

TSAC, 1) = ) Catiyn(i+1) + Camn(d)- 1)
i—1
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When dealing with the TSP, the permutations o{&r2, ... , n} will also be called
tours the elements ofl, 2, . .. , n} will be calledcities and two consecutive citieg(i)
andx(i + 1) in the tour will be said to form aedgeof the tour. In other words, the
minimization of (1) means that the travelling salesman has to visit the cities into
some order, that in the end he has to return to the city from which he had started, and
that he has to minimize the total travel length while doing this.

In the QAP in Koopmans-Beckmann form (Koopmans and Beckmann [22]), the
objective is to find for two givem x n matrices with real entrie?\ = (gj) and
B = (bjj), 1 <i, j <n, apermutationr € S, that minimizes the cost function

n n
QAP(A, B, m) = Zzan(i)n(j)bij- &)
i=1j=1
We refer the reader to the book by Lawler, Lenstra, Rinnooy Kan and Shmoys [25]
for more information on the TSP, and to the survey papers by Lawler [23,24], by
Burkard [5], and by Pardalos, Rendl, and Wolkowicz [31] for more information on the
QAP.

Neighborhoods A neighborhoodV is a sequencgV)n>1 of sets of permutations with

Nn € S. A neighborhoodV assigns to every permutatianc S, the corresponding
neighborhoodV, () = {7 0 ¢ | ¢ € N'n}. Note that\', = N (idp) holds, where ig

is the identity permutation ifg,. As an example, consider the OPT neighborhood

that is the classical and probably best investigated neighborhood for the TSP: The set
K-OPTy, C & consists of all tours that differ in at moktedges from the identity
permutation ig. Consequently, for any € S, the neighborhooé-OPT,(;r) consists

of all tours that differ in at mogt edges fromr.

This is the time for our first disclaimer: The above definition of neighborhood does
by no means coveall concepts of a neighborhood that have been investigated in the
literature. The main drawback is that in our definition, a neighborhood is a strictly static
concept that only depends on the current permutatioin the literature, however,
neighborhoods are often dynamic structures that are time-dependent (e.g. Simulated
Annealing depends on the current temperature respectively current time), history de-
pendent (e.g. Tabu Search depends on the constructed tabu list) or data-depend (e.c
subtour patching depends on the optimal assignment). Nevertheless, we believe that
our definition of neighborhood already captures a good deal of the difficulty and of the
complexity of this concept.

Local search.For combinatorial optimization problems of the type defined above, one
can build around each neighborhoéd a correspondingdocal searchprocedure as
follows:

1 |Initialize

2 Loop

3 Compute a permutationrne, € A () that minimizes CoST(mnew)
4 If COST(mnew) = COST() then

5 Output 7 and stop

6 Else setr := mne, and continue

7 Forever
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Since there is only a finite number of possible permutatior,jrthe procedure will
eventually halt. Of course, the critical part of this generic local search procedure is
line 3: How do we find the permutatiotye, ? If the size of\/ (n) is relatively small (i.e.
constant or polynomial in the input size), then we can simply search thidigh by
enumerating all of its elements. On the other hand, if the siz€ @f) indeed is small,

then every iteration of the loop only considers a small number of potential solutions,
and this may lead to a very long sequence of search steps. Hence, it seems natural tc
require that the neighborhodd fulfills the following two properties:

(N1) The neighborhood/ is exponentially large, i.e. the cardinalitig€’y,| grow
exponentially withn.

(N2) One can compute in polynomial time for every permutatioa S,, a per-
mutation in the neighborhootl (x) that minimizes the functio@osT(-).

If a neighborhood fulfills (N1) then we will call it aexponential neighborhogénd
if it fulfills (N2) then we will say that itcan be searched in polynomial time with
respect to functio€osT(-). In this paper we investigate a variety of combinatorial and
algorithmical questions that are related to neighborhoods fulfilling properties (N1) and
(N2) for the TSP and for the QAP.

Now is the time for our second disclaimer: We dot claim that every useful
local search algorithm has to be based on a neighborhood that fulfills the properties
(N1) and (N2). We only state that these properties are natural and hence are worth
investigating. In fact, most of the neighborhoods that have been studied till now and that
are successfully used in practicemtat fulfill the property (N1), and most of them do not
exploit property (N2). Consider e.g. theOPT neighborhood that has been mentioned
before. Thex-OPT neighborhood was introduced by Croes [10] and by Lin [26], and
its variants folk = 2 andk = 3, 2-OpT and3-0OPT, perform perfectly well in practical
applications. However, the-OPT neighborhood only contair®(n*) permutations, and
hence its size is small and violates property (N1). Moreover, in practical applications
one in general does not search for Hestneighbor ink-OPT with minimum cost, but
only for somebetterneighbor ink-OpPT with smaller cost. Hence, property (N2) is not
strictly needed in this approach.

Comparison of neighborhoodsIn 1981, Sarvanov and Doroshko [34] designed a sim-
ple neighborhood calle ssiGNthat containgn/2)! elements and that can be searched
with respect to the TSP it©(n®) time. Let us compare neighborho@dssIGN to
the 3-OpT-neigborhood: Searching both neighborhoods with respect to the TSP takes
roughly O(n3) time. HoweverAssiGgNcontains(n/2)! elements, where& OPT only
containsO(n®) elements. Hence, a local search procedure bas&d@mt would have
to go through an exponential number of steps, just to compare the current permutation
against the same number of permutations as a local search procedure based on neigt
borhoodAssiGNdoes in a single step! (However, we would not advice the reader to
incorporate this neighborhood in its current form into a local search procedure: it would
always get stuck in a local optimum after the first step).

In this paper, we define and study several neighborhoods of a similar flavor that
fulfill property (N1) and property (N2) for the TSP. We are interested in identifying the
borderline between neighborhoods that can and neighborhoods that can not be searche
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in polynomial time. We look at different ways for defining neighborhoods with nice
combinatorial structure via assignments, matchings in bipartite graphs, partial orders,
and trees. Moreover, we will provide some weak evidence, that uilessNP the

QAP does not possess neighborhoods that simultaneously fulfill (N1) and (N2).

Organization of the paper. Section 2 presents a short discussion of some results on
local search for the TSP from the literature. Section 3 introduces some notation and
basic definitions. Section 4 deals with exponential neighborhoods for the TSP (the
proofs of all theorems in this section can be found in Appendix A) and Sect. 5 deals with
exponential neighborhoods for the QAP (the proofs of the theorems are in Appendix B).
The discussion in Sect. 6 closes the paper.

2. Some well-known results on local search for the TSP

Extensive simulations by Johnson and McGeoch [19] sugges2 it and3-OpTare
the champion local search algorithms for the Euclidean TSP. In the Euclidean plane with
the Euclidean metric, the expected number of steps to reach a local minimum for the
2-OpT-neighborhood is polynomially bounded n'°logn) as shown by Chandra,
Karloff and Tovey [8] (cf. also Kern [20]). However, on randomly generated non-
Euclidean instances-OPT in general performs poorly. Moreover, Papadimitriou and
Steiglitz [29] design specific instances that have a single optimum tour but exponentially
many tours that are local optimums with respec2t®pT and whose length is an
exponential factor away from the optimum.

Papadimitriou and Steiglitz [28] show that unléss- NP, no local search algorithm
that fulfills property (N2) for the TSP can be exact (a local search algorithm is called
exactif every local optimum is also a global optimum). For an extensive discussion of
local search algorithms, see Chapt. 19 in the book by Papadimitriou and Steiglitz [30],
the case study by Johnson and McGeoch [19], and the book by Reinelt [32]. Finally,
we want to mention that the overall shortest TSP tour can be found in exponential-time
O(n%2") by the well-known dynamic programming algorithm of Held and Karp [17].

3. Basic definitions

The set of all permutations ovét, 2, ..., n} is denoted bys,. With a slight abuse
of notation, we will sometimes denotay sequence of pairwise distinct cities over
{1,2,...,n} as a permutation. For a permutatian we adopt the notatiomwr =
(X1, X2, ..., Xn) as abbreviation for#(i) = x; for 1 < i < n". The identity per-
mutation(1,2,3...,n) in & is denoted byid,. For every permutation, we define
its reversepermutatiort™ by 7~ (i) = n(n —i + 1) for 1 < i < n. A permutation

7 is called acyclic shiftor arotation if there exists an indek € {1, ..., n} such that
7= (kk+1...,n1,...,k—1) holds.

For two permutationg; = (X1, ..., Xn) andz2 = (y1, ..., Ym), their concate-
nationmy % 72 is the permutationzy, . .. , Zyrm), Wherez; = x; for 1 <i < n and

Zn4j = yj for 1 < j < m. For two setd1; andIl; of permutations, we define

MMy x [y = {m1xm2| w1 € 1, w2 € T3} 3)
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Clearly, the operation«' is an associative operation on sets of permutations. The
compositiont o ¢ of two permutations, ¢ € S, is defined viar o ¢) (i) = 7(¢(i)).

For a neighborhood/(r) of a permutationr € S,, we will often simply write
“N(7)" and will omit the index, if the dimension is clear from the context. Moreover,
we will define most of our neighborhoods directly for all permutations S, and not
take the roundabout route to define it via the identity permutation.

To keep the notation as simple as possible, we will often use expressions of the
form (n/2)!, or ,/n as integer expressions. In doing this, we assume that the occurring
fractions are always rounded up or rounded down to integers in an appropriate way.

4. Exponential neighborhoods: the TSP

This section discusses combinatorial aspects and complexity aspects of optimizing over
strongly structured exponential neighborhoods for the TSP. Essentially, we will deal
with three groups of neighborhoods: Neighborhoods that are based on assignments anc
matchings (Sect. 4.1), neighborhoods that are based on partially ordered sets (Sect. 4.2)
and neighborhoods that are based on tree structures (Sect. 4.3). Moreover, Sect. 4.4 dis
cusses some other, ‘unclassified’ approaches to exponential neighborhoods, and Sect. 4.
draws some conclusions and poses open problems.
The proofs of all theorems are to be found in Appendix A.

4.1. Neighborhoods that are based on assignments and matchings

Letus start our investigations with a simple neighborhood callediGNthat has been
introduced in 1981 by Sarvanov and Doroshko [34]. Formally,

Proposition 1. (Sarvanov and Doroshko [34])
The neighborhood ssIGN, containg(n/2)! permutations and can be searchedn?)
time with respect to the TSP.

O

There are several natural generalizations of neighborcesiGN that immediately
come to one’s mind:


Usuario
Realce
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e E.g. one may consider the set of permutations that result from arbitrarily permuting
the cities within the even places and simultaneously permuting the cities within
the odd places. This yields the neighborhabsisiGN-EO that containgn/2)!?
permutations, a much larger neighborhood tAasIGN (the “EO” in ASSIGNEO
stands folEVEN and forODD).

e Another generalization arises from dividing the cities into three classes, instead of
only two classes. Hence, let us define that a permutatisrin theASSIGN-MOD3-
neighborhood ofr, if and only if = and¢ agree in the positions whose numbers are
divisible by 3, whereas the cities in the positions that=arg(mod 3 are permuted
arbitrarily within their places, and the cities in the positions thatzarg(mod 3
are also permuted arbitrarily within their placésssiGN-MoOD3 contains(n/3)!2
permutations.

o Finally, we define that a permutati@nis in theAssIGN-2/3-neighborhood ofr, if
and only ifr and¢ agree in the positions that are divisible by 3, whereas the cities
in the positions that are not divisible by 3 may be permuted arbitré#gIGN-2/3
containg2n/3)! permutations.

The three generalizatiodssSIGN-EO, ASSIGN-MOD3, andAssIGN-2/3all have much
larger cardinalities than neighborhoAdsiGNand hence are a clear improvement over
AssIGNwith respect to property (N1). However, unleBs= NP holds, they can not
fulfill property (N2) with respect to the TSP as the following theorem demonstrates.

Theorem 1. Itis NP-hard to minimize for a given input matr& = (cjj) the function
TsP(C, m) over the set of

(i) permutationst € ASSIGN-EO,
(i) permutationst € ASSIGN-MOD3,
(iii) permutationsr € ASSIGN-2/3.
]

An observation of Gutin [16] yields the following slightimprovement over neighbor-
hoodAssIGN Forr € §,, call the firstn/2 + /n/8 cities inz thefixedcities and calll
the lastn/2 — /n/8 cities themovingcities. A permutatiomp is in ASSIGN-GUTIN(7)
if and only if one can gep from 7 by first removing the moving cities from and then
reinserting them arbitrarily between the fixed cities in such a way that between any pair
of consecutive fixed cities, at most one moving city is inserted. Again we observe that
computing the cheapest travelling salesman tolX$$IGN-GUTIN(;7) can be done in
O(n®) time by solving an assignment problem. Simple calculations reveal that the size
of neighborhoodA SSIGN-GUTIN is ((n/2)!(1 + &)¥M), wheree > 0 is some small,
positive real that does not dependrmn

Another way of representing neighborhoods that is closely related to assignments, is
the representation via matchings in a bipartite graphH.et (1 U |/, F) be a bipartite
graph withF € | x I” wherel = {1, ..., n} corresponds to the set of cities and where
I”={1,...,n’} corresponds to the set of positions in some tour.iFoill , we denote
by 'y (i) the set of nodes i’ that are adjacent io We define the neighborhood

MATCHINGH = {¢p € § | (¢(i),i") e Fforalli =1,...,n}. (5)
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In otherwords, the positions ify (i) tell the potential positions of citiyin a neighboring
permutation. E.g. in this model, the neighborhodgsiGN may be represented via
a bipartite graph that contains all the edgies’) with oddi and all the edge€, j’)
with eveni andj. See Fig. 1 for an illustration.

m=1(1,3,2,4,6,7,8,5)

1 2 4 7
3 5 6 8]

1/ 2/ 3/ 4[ 5/ 6/ 7/ 8/

Fig. 1. A bipartite graphH = (I U I’, F). The bold solid lines form a matching that encodes the depicted
permutationr in MATCHINGH

Define theextensionext(i) of a nodei < | as the value maj|j’ € Tx (i)} —
min{j|j’ € Tx(i)}, and define the extension ékt) of the graphH as max ext().
Define theout-degreeout-degH) of the graphH as the maximumI'y(i)| over all
i € |. Balas and Simonetti [3] proved the following result with the help of dynamic
programming.

Proposition 2. (Balas and Simonetti [3])
For a bipartite graphH with extensiorext(H) = d, the neighborhood ATCHING 4
can be searched i®(4%n) time with respect to the TSP.

]

Hence, if the extension of the graphis small, i.ed = O(logn), then the neighborhood
MATCHINGH is easy to search. Perhaps somewhat surprisingly, an analogous result does
nothold for graphsH with small out-degree:

Theorem 2. It is NP-hard to minimize for a given input matri = (cjj) and for
a given bipartite graptH with out-degH) = 2, the functionTsP(C, ) over the set of
all permutationst € MATCHINGH.

]

4.2. Neighborhoods that are based on partial orders

In this section, we consider artial order < on the setl = {1,...,n} of cities.
Two citiesi and j are calledcomparableif i < j or j < i holds, and they are
calledincomparable otherwise. Ananti-chainof a partial order is a set of pairwise
incomparable elements. Tielworth numberof a partial order is the cardinality of its
largest anti-chain. A permutatione S, is alinear extensiorof the order< if and only

if i < jimpliesn(i) < n(j)foralll<i,j <n.ByLINEXT(=x) we denote the set of
all linear extensions of the orde.
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Theorem 3. For a given partial order< which is defined on the set of cities and which
has Dilworth numbed > 2, and for a given distance matri® = (cjj), the function
TSKC, ) can be minimized over the permutations LINEXT (<) in O(n%) time.

O

Balas and Simonetti [3] deal with a special case of finding the shortest tour in a neigh-
borhoodL INEXT (=): In their special case, the partial order is based on a paraketer
andi < j holds for two cities andj if and only ifi +k < j. Itis easy to see that the
Dilworth number of the Balas-Simonetti order equaland so our Theorem 3 implies

the existence of a®(n¥) solution algorithm. However, besides having a small Dilworth
number, the Balas-Simonetti order also fulfills other strong combinatorial properties: It
only hasO(2¥n) distinct anti-chains, and these anti-chains can be found and enumerated
efficiently, without much additional overhead. A dynamic programming approach that
is based on these anti-chains yields@22n) solution algorithm.

In the literature (see e.g. the survey article by Méhring [27]), one can find many
special classes of computationally tractable partial orders: interval orders, series-parallel
orders, N-free orders, orders of bounded height, two-dimensional orders, orders of
bounded dimension, etc. We note that all these classes contain the empty partial order
as a special case. Since the set of linear extensions of the empty partial ordefSggquals
these classes in general will not lead to neighborhoods that can be searched in polynomia
time with respect to the TSP.

4.3. Neighborhoods that are based on tree structures

A permutation tre€l’ over the universal set of citids= {1, ... , n} is a rooted, ordered
tree whosdeavesare pairwise distinct elements bf The set of leaves if is denoted
by LEAF(T). Everyinterior node has at least two sons; an interior nodeth d sons
is labeled with a non-empty sdt(v) € & of permutations. With every permutation
treeT, we associate a SEREE(T) of permutations of EAF(T) as follows: IfT consists
of only a single leafi € I, thenTREE(T) = (u). Otherwise, let, ... , vg denote the
sons of the roat of T, ordered from left to right, and |&; denote the maximal subtrees
rooted atj, 1 <i < d. Define

TREE(T) = U TREE(Ty 1) * TREE(Ty2) * - - - % TREE(Ty(a)).  (6)
Yev(v)

A well-known special case of permutation trees areRRetreesintroduced by Booth

and Lueker [4]: A PQ-tree is a permutation tree whose interior nodes all are either
P-nodesor Q-nodesfor every P-node with d sons,W(v) = & holds, and for every
Q-nodev with d sons,W(v) = {idg.id;} holds. Burkard, Dimeko, Woeginger [6]
investigated the problem of minimizing the functi®sP(C, ) over the permutations
represented by a given PQ-tree. A simple modification of their approach yields the
following theorem.

Theorem 4. For a permutation treel with f = max,cT |¥(v)|, and for a distance
matrix C = (gj), the shortest TSP tour for matr@ contained inTREE(T) can be
computed irO( fn%) overall time.

O
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n

O—O—O—O—®

Fig. 2. A permutation tree that represents the set of pyramidal toug.iiThe root is the leftmost P-node.
All interior nodesv have¥(v) = S

The classical example for a neighborhood that can be represented via permutation trees
is the neighborhoo®yRAMID that is formed by the@yramidal permutationécf. e.g.
Gilmore, Lawler, and Shmoys [14]).

PYRAMIDy = {¢p = (i1,02,...,ik, N, 1, ... jn—k-1) |
k>0 i1<iz2<---<ik, j1>J2> > jn-k-1}-

In other words, a permutation is pyramidal if it first goes through the cities in increasing
order until cityn is reached, and then goes through the remaining cities in decreas-
ing order. For example, the permutatitin 2,5, 7, 8, 9, 6, 4, 3) is pyramidal, whereas
the permutation1, 8, 3,4, 2,5, 6, 7) is not. It is well-known that the neighborhood
PYRAMID , contains 21 permutations and that minimizing the functibar(C, ) over
the setPYRAMID , can be done ifD(n?) time by dynamic programming (Klyaus [21]
or Gilmore, Lawler, and Shmoys [14]).
In the setting of permutation trees, we observe that the neighbofhagiMID can
be represented through a permutation tree of the form as depicted in Fig. 2.
Apparently, Sarvanov and Doroshko [33] were the first to apply the set of pyramidal
permutations as an exponential neighborhood in a local search algorithm for the TSP.
Carlier and Villon [7] investigated the neighborho@drAaMID -CV that consists of all
permutations of the form o ¢ wherer is a pyramidal permutation and whefés a rota-
tion. In their computational experiments on the resulting local search algorithm, Carlier
and Villon observed that their heuristic performs much better &v&@pT, and that it
even is competitive witk -OpT: Every local optimum for neighborhodYRAMID -CV
is also a local optimum fo2-OPT. Moreover, our computational experiments seem to
indicate that most of the times when the local search heuristic gets stuck in a local
optimum,3-OpPT is not able to improve on this local optimum. The following theorem
lends further support to these observations.

Theorem 5. For symmetric distance matrices, every permutatior S, fulfills the
equation

()

| PYRAMID-CV () N 3-OPT(n) | 3+0(1>
T4

| 3-OPT(n) | n

In other words, neighborhooBYRAMID -CV covers at least 75% of the permutations
contained in neighborhoo8-OPT.
|
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m=(3,2,4,1,11,8,9,10,6,7,5)

1 2 3 4 ) 6 7 8 9 10 11

Fig. 3. Reversing all the intervals yields the twisted permutation

Another example for a neighborhood that can be represented via permutation trees
are thetwisted sequencefurenhammer [2] calls a permutatiana twisted sequence
if and only if there exists a permutation tr@esuch that (i)r € TREE(T), (ii) id €
TREE(T), and (iii) every interior node with d sons hasl(v) = {idg, idy }; note that
this definition does not depend on a specific permutationTregnother, equivalent
way of defining twisted sequences is as follows: Start with the identity permutation
(1,2,...,n) and choose a set of intervals oyér. .. , n] such that for every pair of
intervals either one of them contains the other one, or the two intervals are disjoint. Then
reverse (= twist) for every interval the order of its elements. A permutation is a twisted
sequence if and only if it can be derived from the identity permutation via such areversal
process. Observe that e(8, 2, 4, 1) is a twisted sequence, wherdas3, 5, 2, 4, 6) is
not. See Fig. 3 for another illustration.

We denote byTwISTED C §, the set that consists of all twisted sequences. It is
easy to see that for every the neighborhoo@wiIsTED, contains at leas®(2") and
at mostO(6") permutations. Moreover, twisted sequences can be recognizecjn
time (Aurenhammer [2]).

Theorem 6. For a given distance matri = (cjj), the functionTsA(C, =) can be
minimized over the permutationse TWISTED in polynomial timeO(n’).
]

4.4. Other neighborhoods for the TSP

In this section we discuss several approaches to exponential neighborhoods that did not
fit into the framework of the preceding three sections: a geometric approach via Jordan
curves, a graph theoretic approach via Hamiltonian cycles in edge-weighted graphs, and
a combinatorial approach via transpositions.

Let us turn to so-calledordan sequences Jordan permutationsa geometrically
motivated concept. A permutatian= (X1, ... , Xn) € S, is called a Jordan permutation
if and only if there exists a simple, non-selfintersecting curve in the Euclidean plane (i.e.
a Jordan curve) that (i) goes through the poimis 0), (x2, 0), ... , (Xn, 0) in precisely
this order and (ii) does not intersect tkeaxis in any other points. See Fig. 4 for an
illustration.

This type of permutation can be recognizedim) time, see Hoffmann, Mehlhorn,
Rosenstiehl, and Tarjan [18]. We denoteJ®RDAN C S, the set that consists of all
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Jordan permutations. For evarythe neighborhoodoRDAN, contains at leas®(2")
and at mos(8") permutations [18].

Open Problem 1. What is the computational complexity of minimizing for a given input
matrix C = (cjj) the functionT s”(C, ) over the set of permutatiomse JORDAN?

7 =1(1,2,3,8,5,6,7,4)

~ /=0
12\_/3 4 5 6

e

Fig. 4. A Jordan curve that intersects tkexis in 8 points and one of the corresponding Jordan permutations

Another approach to strongly structured exponential neighborhoods for the TSP
is via weighted Hamiltonian cycles in graphs. #tbe a class of specially structured
graphs onwhich the weighted Hamiltonian cycle problem is solvable in polynomial time.
For a graphH € H onn vertices that are numbered.1. ,n, letHAMCYC(H) € &
denote the set of all permutationse S, for which the sequence(l), 7(2), ... , w(n)
forms a Hamiltonian cycle i.

There are quite a few such graph clasiethat contain graphs with an exponential
number of Hamiltonian cycles. Cornuejols, Naddef, and Pulleyblank [9] show that
a minimum weight Hamiltonian cycle in a Halin graph can be computed in polynomial
time. Glover and Punnen [15] construct a class of graphs wertices for which one
can compute ird(n) time a weighted Hamiltonian cycle whose weight is less or equal
to the weight of® (12"/3) other Hamiltonian cycles in the graph. The results of Fonlupt
and Nachef [12] can be applied in a similar way to yield exponential neighborhoods.

Finally, we come to sets of permutations that are definedraiaspositionslt is
well-known that every permutation € S, can be factored into a sequence of cycles of
length two, so-called transpositions. This meansthat (i¢, j¢)(¢—1, je—1) - -- (1, J1)
holds with the following interpretation: If one starts with the identity permutatign id
and first swaps element with elementj1, then swaps the elemeritsand j,, and so
on, then one will finally end up with permutatian The sequence in which these swaps
are performed is essential, and this factorization is not unique. However, for every such
factorization ofr into transpositions, the number of transpositions in the factorization
has the same parity. The s} C S, consists of the permutations that can be factored
into an even number of transpositions. It is easy to see|thgdt = %n! holds, and
thus A, forms an exponential neighborhood. Of course, it is NP-hard to sef&ytith
respect to the TSP.
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4.5. Some conclusions on neighborhoods for the TSP

To summarize, in the preceding sections we have constructed quite a few exponential
neighborhood that can be searched in polynomial time with respect to the TSP. Most of
these neighborhoods had sizeég/") for somey > 1, and just a few of them (variants

of neighborhoodA ssIGN) were of larger size. Our results seem to indicate that it will

be difficult to obtain a substantial improvement over neighborhessiGN Hence, we
formulate the following two open questions.

Open Problem 2. Doesthere exist an exponential neighborhgéthat can be searched
in polynomial time with respect to the TSP and that fulfills for all sufficiently large

(@ [Nal = (an)! for some fixed: > 3?
(b) |Na| = B-n! for some fixegd > 0?

We conjecture that the first question has answer YES, and that the second question ha:
answer NO (of course, under the assumption hgt¢ NP).

Theorem 7. Let N be an exponential neighborhood that can be searched in fimye
with respect to the TSP. Théh,| < (2 f(n)™ holds for alln.
]

An immediate consequence of this theorem is that any exponential neighborhood that
fulfills the conditions in Open Problem 2.(a) and (b) cannot be searched in linear time
O(n) with respect to the TSP. This also answers a question of Gutin [16].

5. Exponential neighborhoods: the QAP

In this section, we go once again through the list of neighborhoods that were defined
in the preceding section for the TSP, and we discuss and investigate them with respect
to the QAP. The outcome of these investigations is disastrous: URlessNP, all

known exponential neighborhoods do not fulfill property (N2), i.e. can not be searched
in polynomial time with respect to the QAP. The proofs of the theorems can be found
in Appendix B.

First, let us recall that the TSP is a special case of the QAP. Hence, all NP-
completeness results stated in Sect. 4 immediately carry over to the QAP. Next, let
us introduce yet another neighborhood, calledin, that will turn out to be useful in
this section. The neighborhodaviN is only defined for even numbens

TWIND = (7€ S | {72 — 1), 7(2)} = (2 — 1,2 fori =1,...,n/2}. (8)

Whereas it is easy to sear@hwIN in O(n) time with respect to the TSP, we have the
following fundamental negative result for the QAP.

Theorem 8. The problem of minimizing the functi@apr(A, B, =) over all permuta-
tionsm € TWIN for given input matrice#A = (&) and B = (bjj) is NP-hard, even if
A and B both are 0-1-matrices.

O
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Let us start our discussion with the neighborhoods based on assignments and match-
ings as introduced in Sect. 4.1. In this area, the known polynomial time results for the
TSP are the result on neighborhoddsiGNin Proposition 1, and the result on neighbor-
hoodMATCHINGH with bipartite graphs of constant extension in Proposition 2. First,
the proof of Theorem 9 below shows that neighborhd@$1GN cannot be searched
in polynomial time with respect to the QAP. Secondly, for bipartite graghwith
ext(H) = 1, the neighborhooM ATCHINGH is uninteresting since it contains at most
one permutation. Finally, searching the neighborhigled CHINGH with respect to the
QAP is an NP-complete problem for bipartite graphsvith ext(H) = 2: The neigh-
borhoodTwIN can be represented BEATCHING y with a graphH with ext(H) = 2.

Theorem 9. Itis NP-hard to minimize for given input matricés= (a;j) andB = (bjj)
the functionQAP(A, B, i) over the permutations € ASSIGN.
O

Next, let us turn to neighborhoods based on partial orders as discussed in Sect. 4.2.
The only polynomial time result that we had for the TSP in this area is the result
on neighborhood. INEXT(=x) for partial orders with bounded Dilworth number in
Theorem 3. However, partial orders with Dilworth number 1 are total orders, and
for them the neighborhoodINEXT (<) only contains a single permutation. On the
other hand, the neighborhoddviN can be represented &SNEXT (=) of a partial
order= with Dilworth numberd = 2: Leti < jifandonlyif [i/2] < |]j/2]. Hence
by Theorem 8, searching the neighborhdod EXT (=) for partial orders of bounded
Dilworth number> 2 with respect to the QAP is an NP-complete problem.

Finally, we come to neighborhoods that are based on tree structures (cf. Sect. 4.3).
In this area, we had four polynomial time results for the TSP: for the neighborhood
TREE(T) if maxyeT |¥(v)| is polynomially bounded im (Theorem 4), for the neigh-
borhoodPYRAMID, for the neighborhoodYRAMID -CV, and for the neighborhood
TwISTED (Theorem 6).

First, let us discuss neighborhoods that are based on permutation trees. Permutatior
treesT for which|W(v)| = 1 forallv € T lead to uninteresting neighborhootReE(T)
that only contain a single permutation. On the other hand, the neighboTiveodmay
be represented via a permutation tfefr which | W (v)| < 2 holdsfor allv € T. Hence,
there is no hope for getting non-trivial positive results on the QAP via permutation
trees. Theorem 10 shows that also the neighborhBeeéamid, PYRAMID -CV, and
TwISTED can not help in reaching this goal. Also the neighborhdodDAN whose
status with respect to the TSP remained unsettled (cf. Open Problem 1) is NP-hard to
search with respect to the QAP.

Theorem 10. It is NP-hard to minimize for given input matrice = (aj) and
B = (bjj) the functionQAP(A, B, ) over

(i) the permutations € PYRAMID,

(ii) the permutationsr € PYRAMID-CV,
(iii) the permutationsr € TWISTED,

(iv) the permutationg € JORDAN.
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To summarize the results of this section, we notice that urifessNP, all expo-
nential neighborhoods treated in this paper do not fulfill property (N2) with respect to
the QAP. Hence, the following conjecture seems to be reasonable.

Conjecture 1. Under the assumptioR # NP: For every neighborhood/ that can
be searched in polynomial time with respect to the QAP, there exists a polynomial
p: N — N such thaiA,| = O(p(n)).

6. Discussion

In this paper we considered exponential neighborhoods for the TSP and for the QAP.
For the TSP, we investigated a variety of neighborhoods that can be defined in a sim-
ple way via assignments, matchings in bipartite graphs, partial orders, trees and other
combinatorial structures, and we were able to identify several properties of these com-
binatorial structures that lead to polynomial time optimization algorithms. For the QAP,
we encountered quite a different situation: Every exponential neighborhood that we
considered in this paper provably leads to an NP-complete optimization problem for
the QAP. In fact, it is rather easy to come up with other exponential neighborhoods
over which the QAP cannot be solved efficiently (this part of our work, however, will
remain unpublished). These investigations naturally lead us to Conjecture 1. Settling
Conjecture 1 and Problem 2 are also the main questions that are left open in this paper.

Most of our polynomial time results should be considered merely as first versions
or as sketches of polynomial time algorithms. We were mainly interested in deriving
polynomial time results and not in getting a polynomial running time with a small
exponent. Currently, we are performing large scale computational experiments on which
we will report elsewhere.

A guestion that we did not attack is how to actually measure the quality of a neigh-
borhood for a local search procedure. Exponential size of a neighborhood clesoty is
sufficient to guarantee a highly efficient local search algorithm. Another important pa-
rameter is e.g. the average time of going from one permutation to another permutation
within the local search (cf. Tovey [35]). Overall, we feel that we only scratched the
surface of this area, and we hope that this paper will be the starting point of a systematic
theoretical study of exponential neighborhoods.

AcknowledgementsWe thank Eranda Cela, Richard Congram, Bettina Klinz, Chris Potts, and Steef van de
Velde for discussions, for helpful comments, and for pointing out several minor mistakes in an earlier version
of this paper.

A. Appendix: Proofs of the theorems on the TSP

Proof of Theorem 1(i)The proofis done by a simple reduction from the standard trav-
elling salesman problem. In the decision version of the standard TSP, the input consists
of a non-negativa x n distance matriXD = (d;j) together with an integer bourutf.

The question is whether there exists a permutagian S, such thafTsp(D, ¢) < d*.

We construct a2 x 2n matrix C as follows:
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e Foralll<i<n,cy_12 =0

e Foralll<i <nandalll # 2i, Co_1¢ =00
e Foralll<i <n,cgg_1 =00

e Foralll<i# j<n,cyoj_1=dij

e Forall1<i s j <n,cppj =00

We claim that there exists a permutatipre S, such thafTsr(D, ¢) < d* if and only
if there exists a permutation € AssIGN-EO such thafTsr(C, 7) < d*:

First, assume thatthere exists a permutatieA sSIGN-EOsuch thall sSK(C, ) <d*
In 7z, the only possible successor for a city-2 1 is the city 2. From this it can be
seen that the toup defined agn(2)/2, 7(4)/2, ... ,7(2n—2) /2, w(2n)/2) constitutes
a travelling salesman tour of costd* for D. Vice versa, ifTsA(D, ¢) < d* then the
permutation) = (27(1) — 1, 27(1), 27(2) — 1, 27(2), ..., 2x(n) — 1, 27(n)) yields
TsAC, m) < d*.

oo

Proof of Theorem 1(ii) and (iii)We only give the proof for statement (iii). The proof
for statement (ii) will follow from the observation that in the instance constructed
below, all feasible permutations € AssIGN-2/3 with TSP(C, ) = 0 also belong to
ASSIGN-MOD3.

The proofis done by a reduction froBARTITION INTO TRIANGLES (cf. Garey and
Johnson [13]) which is defined as follows. The input consists of a tripartite undirected
graphG = (U UV UW, E) with tripartitionU = {uq, ..., ux}, V = {v1, ..., v}, and
W = {w1,...,wk}, and withE € (U x V) U (V x W) U (W x U). The question is
whether there exists a partition of the nodel$etV UW into triples(u, v, w) such that
(u, v), (v, w) and(w, u) all belong toE. PARTITION INTO TRIANGLESIis NP-complete.

Setn = 6k and construct an x n distance matrixC as follows. Forevery ¥ i <Kk,
the cities 6 — 3 and 6 correspond to noda, the city 6 — 2 corresponds to nodg, the
city 6i — 1 corresponds to node;, and the cities i6— 4 and 6 — 5 are dummy cities.
The distances are defined as follows (the indices are taken moklule 6city & + 1
equals city 1 and so on):

e Foralll1<i <K, Csi—66i—5 = Csi—5.61—4 = Csi—4.6i—3 = 0. The distances between
cities 6 —5 and 6 — 4 and all other cities are 1. Moreover, the distances from®
to all other cities are 1.

e Forall1<i <Kk, cs_36j—2 = 0 if and only if in G there is an edge between
andvj. The distances from cityi6- 3 to all other cities are 1.

e Forall1<i <Kk, csi—26j—1 = O if and only if in G there is an edge between
andwj. The distances from cityi6- 2 to all other cities are 1.

e Forall1<i <k, cg—16j = O if and only if in G there is an edge between
anduj. The distances from cityi6- 1 to all other cities are 1.

It can be shown that there exists a permutation ASSIGN-2/3with TSP(C, ) = 0 if
and only if the instance dPARTITION INTO TRIANGLES has answer “Yes”.
oo
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Proof of Theorem 2The proof is done by a reduction from the NP-complitax
CuT problem in cubic graphs (cf. Garey and Johnson [13]). This version dfithe
CuT problem takes as input an undirected simple gr@ph (V, E) where every node
has degree three, together with an integefhe goal is to decide whether there exists
a partitionV = Vj U V7 of the nodes such that at leapbf the edges irE have their
endpoints in different parts of the partition. Note that in the cubic gagB8|V| = 2| E|
holds.

For every node and for every incident edge = (v, w) € E, we introduce two
corresponding cities that are denotedXy(e, v) and X2(e, v). For every node € V
with incident edgese;, e, and es, we introduce three positionB(er, v), P(es, v),
P(e3, v) and three position®1(v), Q2(v), Q3(v) that may only be occupied by the six
cities that correspond to this node. Then the two matchings in the cycle

X1(e1,v) — P(er, v) — Xa(ey, v) — Q1(v) — Xu(€2,v) — P(€2, v) —
—X2(€2,v) — Q2(v) — Xu(€3,v) — P(e3, v) — Xa(e3, v) — Qa(v) — Xa(€y, v)

encode the two feasible assignments between the cities correspondingntb the
positions corresponding to (actually this cycle is part of the bipartite graphthat
we are going to define below). Moreover, there will b&ERBdummy citiesand 3E|
dummy position€Every dummy city can be assigned to a unique corresponding dummy
position. The introduced cities form the $aif the bipartite grapit, and the introduced
positions form the selt’. The edge sef contains only edges that arise from the cycles
defined above, and edges that connect dummy cities to their unique dummy positions.
Next, we specify the exact ordering of the positions. In this ordering, first there
comes an alternating sequence gf Bdummy positions and the/8| positionsQ, (v)
with 1 < ¢ < 3andv € V. Then there comes an alternating sequence of the remaining
|E| dummy positions anfE| pairs of position$>(x, x): For every edge = (v, w) € E,
the sequence contains a corresponding pair of positions that consists of the two positions
P(e, v) and P(e, u) next to each other. Finally, we specify the distance mairithat
describes the distances of the cities to each other.

e Foreveryedge = (v, w) € E, the two citiesX1 (e, v) andXj (e, u) are at distance 1
to each other, and also the two citiés(e, v) andX»(e, u) are at distance 1 to each
other.

e All other distances are 0; note that especially every dummy city is at distance 0 to
all other cities.

This completes the description of the TSP instance and of the bipartite graphe
two possible matchings between the cities corresponding to anade the positions
corresponding t@ encode whether nodeis put into node set; or into node sevs.
It can be shown that the instancelMfax CuT has answer “Yes” if and only if there
exists a permutation € MATCHINGH such thafTsP(C, n) takes a value of at most
|El — Q.

oo

Proof of Theorem 3Throughout the proof of this theorem, we consider the Dilworth
numberd of the partial order to be a constant. By the theorem of Dilworth [11], the set
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| of cities can be partitioned intblinearly ordered chaink, . .. , Ig. Moreover, such
a chain partition can be computed in tir@gn9). For two citiesi # j withi < j, we
say that cityi is thedirect predecessaof city j in a chain partition, if (i) cities and j
belong to the same chalp and if (ii) there does not exist a cikye 1,,i # k # ] with
i<k=xj.

We generate the acyclic, weighted, directed gr@ph (V, A) where every node is
a(d + 1)-tuple from

lU{?} x 11U{@} x lILU{d} x --- x lquU {4}, 9)

such that the first component of thd + 1)-tuple also occurs at a (unique) other
coordinate. This first component s called tieadof the node, the other components
are called thébody componentsf the node. Hence, graph containsO(n%) nodes.
There is an arc from a source node to a target node if and only if

e the two nodes have distinct heads,

e the two nodes agree in exactly— 1 of the body components, but not in that body
component that corresponds to the chigicontaining the head of the target node,

e in this ¢th body component, the component of the target node equals the head of
the target node, and the corresponding component of the source node is the direct
predecessor of the head of the target node.

The length of this arc equals the distance from the head of the source node to the heac
of the target node. Clearly, the number of arc&iis O(n?). Intuitively speaking, every
node in this graph encodes the starting segment of some permutationExT (<):
The head describes the last city visited by this starting segment, and the body component
for chainl, gives the last city in chaith, that has been visited by the starting segment.
If a source node is connected to a target node by an arc, this means that the starting
segment that corresponds to the target node can be obtained from the starting segmern
that corresponds to the source node by adding one additional city. If the position
corresponding to some chain equals %", then the starting segment has not yet
visited any city from this chain.

The shortest TSP tour InINEXT (<) decomposes into a Hamiltonian path that starts
in a city x without predecessor in the partial order and ends in ayuitithout successor,
and into the edgéy, x). With this it is clear that in order to solve this version of the TSP,
one only has to perform a shortest path computation in the g&fir every pair of
cities x without predecessor andwithout successor. Since there are o8lgd?) such
pairs and since every shortest path can be comput@{riﬁ) time, this leads to the
desiredO(n?) time solution algorithm.

oo

Proof of Theorem 4The node set of the permutation tréds denoted by; hence,
V consists ofn leaves and ofO(n) interior nodes. Fow € V, denote byT(v) the
maximal subtree rooted at nodeFor a leafa in T(v), we denote byl (v, a) the tree
T(w) wherew is the unique son of with ain LEAF(T(w)). For an interior node, two
leavesa andb in LEAF(T(v)) are said to beeparated by, if and only if they are in
two distinct subtrees rooted at sonswfWe denote this bya, b) € SERv). For the
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sake of completeness, we also define that for everylgaf v) € SER(v) holds. It can
easily be seen that the overall number of triglesa, b) with (a, b) € SERv) equals?
(cf. [6]).

For any interior node and for any two leavea andb in T(v) with (a, b) € SERv),
define two valuesX[v; a, b] andY[v; a, b] as follows: X[v; a, b] is the length of the
shortest Hamiltonian path iMREE(T(v)) that starts ira and ends irb while obeying
all restrictions imposed by the permutation tr&gv; a, b] is the length of the shortest
Hamiltonian path through the cities ireArF(T(v, a)) U {b} that starts ira and ends in
b and whose initial part belongs ToREE(T(v, @)). If v is a leaf, defineX[v; v, v] = 0
and Y[v; v, v] = 0. Our goal is to compute all value§[v; *, ] and Y[v; , x]. All
computations are done in a bottom-up fashion, starting at the leaxfes and moving
up towards the root. When we are dealing with a father, for all of its sotiee values
X[w; *, %] have already been computed.

We only need to consider the case wheis an interior node with sons, ... , vq
ordered from left to right. Foa € LEAF(T(v)) definev; to be the root of the subtree
T(v, @). Then the equation

Y[v; a bl = min{ X[vi; & z] +Czp | Z € LEAF(T(v)) } (10)

holds. Next, let us compudé[v; a, b]. Consider some fixed permutatigne ¥ (v) with
a € LEAF(T(vy1))) andb e LEAF(T(vy))), and for 2< k < d, consider arbitrary
nodeszx € LEAF(T(vyk))). Then

d-1
X[v;a, bl < Y[v;a zal+ Y Y[v; Z, Zt1l + Xlvyco); Zd, bl (11)
k=2

holds, and in facX[v; a, b] equals the minimum of the righthand side taken over all
such choices fory andz, ... , z4. For every fixedy,, computing the corresponding
minimum over choices fory, ... ,zq can be done as a shortest path computation
in an appropriate underlying graph with(n) nodes andO(n?) edges. This can be
done by standard techniques @(n?) time, and hence, the total time for computing
X[v; a, b] is O(|¥(v)|n?). Since there are onl®(n?) valuesX[v; a, b] andY[v; a, b]
that have to be computed, the overall time for computing all these valu@sfis*)
wheref = maxet |¥(v)].

Finally, note that the shortest TSP tourireg(T) decomposes into a single edge
(1, x) and a shortest Hamiltonian path throudh. .. , n} that starts in cityx and ends
in city 1, for an appropriate citx. Hence, ifr is the root of T then the length of this
shortest tour equals mirfcy x + X[r; X, 1]}.

oo

Proof of Theorem 5The proof is done by carefully counting the tours3rOPT(r).

Since we are dealing with symmetric distance matrices, we will not distinguish between
a permutatio and its reverse permutation. Ligtto, andts denote the number of tours

in 3-OpPT(x) that differ froms in 0, 2 and 3 edges, respectively, andpet p2, andps,
respectively, denote the number of such tours that aRymamMID -CV (7). Trivially,

to = po = 1 holds. If a tourgp differs from in exactly two edges, it results from

by removing twonon-adjacenedges and reconnecting the resulting parts in the only
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possible way. From this and from the fact that every such tourBRAMID -CV (1),
it follows thatt, = p, = $n(n — 3) holds.

Next, let us discuss the tours that differ franin exactly three edges. The removal
of three edges fromr decomposes the tour into three pa¥sY, andZ such thatr is
a cyclic shift of X x Y x Z. Since we do not distinguish between permutations and their
reverse permutations, we may assume without loss of generality that any permutation
3-OpT(xr) that results from the pathX, Y, andZ and that differs fromr in exactly
three edges starts with the paxh(after an appropriate cyclic shift). Hence, there are
only four such tours ir8-OpT(x):

Pr1=X*xZ"xY, ¢p2=X*xZ*xY", ¢p3=X*xZxY, pa=XxY " xZ". (12)

(We do not consider the remaining four tofsc Yx Z, X*Yx Z7, X+* Y~ » Z, and
X% Z~ % Y~ since they differ fromr in at most two edges). Next, distinguish three
cases. (C1). The case where two or more of the p&thé, andZ consist of a single
city is meaningless, as in this case the togirgiffer from = in at most two edges.
(C2). In case exactly one of the three paths consists of a single city, sa)Xp#ibn
¢1 and ¢y differ from =z in only two edges, anas is the reverse of4. (C3). If all
three paths contain at least two cities, then the four permutagigng,, ¢3 and ¢4
are pairwise distinct. Finally, since there ar@ — 4) possibilities for case (C2) and
%n(n — 4)(n — 5) possibilities for case (C3), we get thgt= %n(n —4(2n—-T7).

What aboutps? First, observe that every tour that results from case (C2) is in
PYRAMID -CV (7). Observe thatr = Y+ Z « X (remember thaPYRAMID -CV looks
at all cyclic shifts) and consider the cyclic shiff = Y x X x Z~ of ¢1. With this,
it is easy to see thap; is contained inPYRAMID -CV (;r). By similar arguments, one
gets that als@, and¢4 are contained irPYRAMID -CV (;r). Summarizing, this then
yields p3 > %n(n — 4)(n — 3) and the statement of the theorem follows from a simple
calculation.

oo

Proof of Theorem 6This proof is done by straightforward dynamic programming. For

everyi, jwithl <i < j < nand for everya,bwithi < a,b < j, we introduce

the valueX(i, j; a, b] as follows:X[i, j; a, b] is the length of the shortest Hamiltonian

path through the cities ifi,i + 1, ..., j} that starts ira, that ends irb, and that forms

a twisted sequence for the citiesfini + 1, ..., j}. Our goal is to compute all such

valuesX(i, j; a, b]. These values are computed in the order of increasing valje of
Clearly, we may sei([i,i;i,i] := 0, X[i,i +L;i,i + 1] := Giit1, X[i,i + 1

i+1,i]1:=c4+1forl <i <n-—1. Moreover, all other valuex[i, j; a, bjwitha="b

are set ta. Forj > i + 2 anda < b, we compute

X[i,j;a,b]zmrfl{ X[i.k;a el + X[k+1, j; f,b] +Ce t |
a<k<b-1li<e<k k+1l=<f<j}, (13)
and forj > i + 2 anda > b, we compute in a symmetric way
X[i,j;a,b]:lmirf\{ X[k+1, j;a €]+ X[i,k f,b] +cet |
b<k<a-1 k+1l<e<ij, i<f<k}. (14)
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The intuition behind these formulas is as follows: In every interval representation of
a twisted sequence fdr,i + 1,..., j}, there must exist & i < k < j — 1, such that
either none of the intervals does contélink + 1} or only the intervali, j] contains
{k, k+1}. The formulas (13) and (14) essentially check every possibility for this \alue

Since there ar®©(n*) valuesX]i, j: a, b] that are to be computed, and since every
value is computed irO(n®) time via (13) and (14), the overall computation time is
O(n’). Finally, note that the shortest TSP tour fdr. .. , n} in TWISTED decomposes
into a single edgéx, 1) and into a shortest Hamiltonian path through. .. , n} that
starts in city 1 and ends in city, for an appropriate citx. Hence, the length of this
shortest tour equals mirfcy x + X[1, n; x, 11}.

oo

Proof of Theorem 7Let N be an exponential neighborhood that can be searched
in time f(n) with respect to the TSP. Then while searching throngh the search
algorithm considers at mo$tn) of the ®(n?) distances between tmecities. Construct
an undirected grapl® whose vertices are the cities and that contains exactly those
O(f(n)) edges that are considered by the search algorithm. Léit)disnote the degree
of city i in G.

Clearly, the number of Hamiltonian cycles @& is an upper bound opVjy|. In
a Hamiltonian cycle, there are at most degossibilities for the successor city of city
Hence we get that

Aol < iEole@m < (%i;jdeqi)) < (§ f(n)) , (15)

where we applied the arithmetic-geometric mean inequality. This proves the theorem.
oo

B. Appendix: Proofs of the theorems on the QAP

Proof of Theorem 8The proof is done by a reduction from the NP-complitex
CuT problem (cf. Garey and Johnson [13]). Thieax CuT problem takes as input an
undirected simple grap® = (V, E) and a numbeq, and asks whether there exists
a partitionV = Vj U V7 of the nodes such that at leapbf the edges irE have their
endpoints in different parts of the partition.

Letk = |V| + |E| and seth = 2k. The matricesA and B are both symmetric
n x n matrices with zeroes on the main diagonal, and thus it is sufficient to specify the
entries above their main diagonals. The firdf Rrows (and by symmetry, columns) in
matricesA and B correspond to the nodes &, and the last [E| rows and columns
correspond to the edges@ More precisely, for < i < |V|, the two rows 2— 1 and
2i correspond to théth node, and for < j < |E]|, the two rows V| + 2j — 1 and
2|V| + 2j correspond to thgth edge. In the definition of and B, we will put copies
of the 2x 2 matrices

10 01
w=(o3)  w=(3)
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at the crossings of the two rows 2 1 and 2 with the two columns /| + 2j — 1 and
2|V|+ 2], in case théth node is incident to th¢th edge. With this, matriX is defined

as follows: For every paiii, j) such that théth node is incident to th¢th edge, put the

2 x 2 matrix M1 at the crossing of the two rows 2 1 and 2 with the two columns

2IV| 4+ 2j — 1 and 2V| + 2j. All other entries above the main diagonal Afare set

to 0. Matrix B is defined as follows: For every edge, put the malixat one crossing,

and the matrixM, at the other crossing of the two columns corresponding to this edge
with the rows corresponding to the two incident nodes. All other entries above the main
diagonal ofB are set to 0.

We show that the instance Mfax CUT has answer “Yes” if and only if there exists
a permutationr € TWIN such thatQAP(A, B, ) takes a value of at mostR| — 2q.
First, assume that the instanceMfax CuT has answer “Yes”, i.e. that there exists
a partitionV = Vq U V7 of the nodes such that at leapbf the edges irE have their
endpoints in different parts of the partition. Define the permutatioms follows: If
theith node is inVy, then definer(2i — 1) = 2i — 1 and=(2i) = 2i, and if theithe
node is inVy, then definer(2i — 1) = 2i andx(2i) = 2i — 1. If the jth edge is in
the cut, then defing(2|V| + 2j — 1) andx(2|V| + 2j) in such a way that these two
columns contribute 0 to the objective function. If it edge is not in the cut, then define
72\V|+2j—1) = 2|V|+2j—1andr(2|V|+2]j) = 2|V|+2j;the contribution of these
two columns to the objective function will be 2. It can be verified that TwiN and
thatQAP(A, B, m) is at most 2E| — 2g. Next, assume th&@AP(A, B, 7) < 2|E| — 2q
for somer € TwiN. Define a partition o = V1 U V5 such that théth node is invy if
(2i) = 2i, and otherwise iV2. It can be verified that the cut defined by this partition
is crossed by at leagtedges inE.

oo

Proof of Theorem 9The proofis done by a straightforward reduction from the standard
QAP. Let then x n matricesA andB form an input for the standard quadratic assignment
problem. Define @& x 2n matricesA’” and B’ as follows: For 1< i, j < n, define
ay o) = &j andby ,; =bjj. For1<i, j < 2n, defineaj; =bf; = 0ifi or j is odd. It
is easy to prove that the minimum of the functiQar(A, B, ) over all permutations
7 € S equals the minimum of the functioRArP(A’, B’, #’) over the permutations
7' € ASSIGN
oo

Proof of Theorem 10(i) and (ii)Me only give the proof for statement (i). Correctness of
statement (i) easily follows along the same construction. The proof of (i) is done by a re-
duction from the NP-completeQuIPARTITION problem (cf. Garey and Johnson [13]).

The EQUIPARTITION problem takes as inputkositive integerxs, Xo, ... , X2k and
askswhetherthereexistsabet {1,2,..., 2k}, |[I| =k suchthad ;. xi = > ;4 Xi.
Setn = 2k and define th@ x n matrix A = (ajj) by ajj = x; - xj for1 <i, j < 2k.
Define matrixB by bjj = 1for1<i, j < kandk+1 <i, j < 2k, and bybjj = -1,

otherwise. We show that the instanceE@jUIPARTITION has answer “Yes” if and only
if there existst € PYRAMID such thaQArP(A, B, i) takes a non-positive value.
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First, assume that there exists a permutaticn PYyRAMID such thaQAP(A, B, )
take a value< 0. Then the equation

2

n n
0 > QAP(A, B, ) = ZZXn(i)Xn(j)bij = Z X (i) — Z Xz (i)

i=1j=1 im(i)<k im(i)>k
(16)

holds, and hence the index $et {x(i) : 7(i) < k}yields a solution ofthEQUIPARTI-
TION instance. Next, assume that the instande@f I PARTITION has answer “Yes”, i.e.
thatthere existsasetc {1,2,..., 2k}, |I| = k,suchthad ;. xi = >, Xi. By sym-
metry we may assume thatll. Define the permutationm = (y1, ..., Yk, Z1, ... , Z)
where they; are the elements df put into increasing order, and where theare the
elements of{1,2,...,2k} \ | put into decreasing order. Then € PyRAMID and
QArP(A, B, m) =0.

oo

Proof of Theorem 10(iii)This proof is done by modifying the proof of Theorem 8 in
a straightforward way. First we observe thatiN € TwiSTEDholds. Next, we consider
the symmetricy x n matricesA andB that are constructed in this NP-completeness proof:
Both are 0-1 matrices with zeroes on the main diagonal, and herd®8r(A, B, 7) <
n? — n holds. We define matrice&’ and B’ by changing the main diagonals Afand
B in the following way:al; _; 51 = @ 5 = N2 andby;_; 5, = by 5 = n2". It
is easy to verify that for any’ € TwiN, the contribution of the main diagonal entries
to the objective functioQAP(A’, B, 7’) equal:®2", whereas for any’ ¢ TwiIN, the
contribution of the main diagonal entries will be at lea®"+n?. From this we conclude
that the problem of minimizin@QAP(A, B, i) over the permutations € TwIN and
the problem of minimizindQAarP(A’, B', /) over the permutations’ € TwISTED both
take their minima at the same permutations.

oo

Proof of Theorem 10(iv).et us introduce a subsétux of the Jordan permutations
over{l,2,...,6k}. A permutationr is in Auxe if and only if

{(m(3i —2), 7(3)} ={3i —2, 3i} fori=1,...,2k and
73i—1)=3i—-1 fori=1,...,2k

In other words, every triplei3- 2, 3 — 1, 3 of cities must occur at the positions-3 2,
3i — 1, and 3 of the permutation, and it must either occur in precisely this ordering or
in the reverse ordering. It is not hard to see thakex C JORDANgK holds.

For the NP-completeness proof, we modify the proof of Theorem 8 in a similar
way as we did in the proof of Theorem 10(iii). Again, we start with the symmetric
n x n matricesA and B that are constructed in the proof of Theorem 8. Without loss
of generality, we assume thatis divisible by 4, i.e.n = 4k. SinceA andB are 0-1
matrices with zeroes on the main diagonalc0QAP(A, B, 7) < n? — n holds. We
construct & x 6k matricesA’ andB’ as follows: We insert between any pair21 and
2i of rows (respectively, of columns) a dummy row (respectively, a dummy column)
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that with the exception of the diagonal entry entirely consists of 0-entries. The main
diagonal entries oA’ and B’ are defined byy , 5 , = a5 14 1 = a3 45 = 3 and

G232 =bg_15_1 =Dy 4 =n3"" fori =1,... 2k Itcan be verified that for
anyn’ € Aux, the contribution of the main diagonal entries to the objective function
QAP(A, B, 7') equalmn®3", whereas for any’ € JORDAN \ AuX, the contribution of
the main diagonal entries will be at least3” + n?. With this, the problem of solving
the QAP forA’ andB’ over the permutations iSloRDAN boils down to the NP-complete
problem of solving the QAP foA andB over the permutations ifiwiIN.

oo
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