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Abstract. This paper deals withexponential neighborhoodsfor combinatorial optimization problems. Ex-
ponential neighborhoods are large sets of feasible solutions whose size grows exponentially with the input
length. We are especially interested in exponential neighborhoods over which the TSP (respectively, the QAP)
can be solved in polynomial time, and we investigate combinatorial and algorithmical questions related to
such neighborhoods.

First, we perform a careful study of exponential neighborhoods for the TSP. We investigate neighbor-
hoods that can be defined in a simple way via assignments, matchings in bipartite graphs, partial orders,
trees and other combinatorial structures. We identify several properties of these combinatorial structures that
lead to polynomial time optimization algorithms, and we also provide variants that slightly violate these
properties and lead to NP-complete optimization problems. Whereas it is relatively easy to find exponential
neighborhoods over which the TSP can be solved in polynomial time, the corresponding situation for the QAP
looks pretty hopeless:Everyexponential neighborhood that is considered in this paperprovably leads to an
NP-complete optimization problem for the QAP.

Key words. neighborhood – local search – search problem – Travelling Salesman Problem – Quadratic
Assignment Problem – polynomial time algorithm – NP-completeness – combinatorial optimization

1. Introduction

In this paper, we deal withoptimization problemsof the following form: An underly-
ing cost functionCOST : Sn → IR assigns to every permutation a non-negative cost
(throughout the paper, we will denote bySn the set of all permutations of{1,2, . . . ,n}).
The goal of the optimization problem is to identify a permutationπ at which the func-
tion COST(·) takes its minimum. Two well-known and fundamental problems of this
type in combinatorial optimization are theTravelling Salesman Problem(TSP) and the
Quadratic Assignment Problem(QAP).

In the TSP, the objective is to find for a givenn × n distance matrixC = (ci j )

a permutationπ ∈ Sn that minimizes the cost function

TSP(C, π)
.=

n−1∑
i=1

cπ(i)π(i+1) + cπ(n)π(1). (1)
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When dealing with the TSP, the permutations over{1,2, . . . ,n} will also be called
tours, the elements of{1,2, . . . ,n} will be calledcities, and two consecutive citiesπ(i)
andπ(i + 1) in the tour will be said to form anedgeof the tour. In other words, the
minimization of (1) means that the travelling salesman has to visit the cities 1 ton in
some order, that in the end he has to return to the city from which he had started, and
that he has to minimize the total travel length while doing this.

In the QAP in Koopmans-Beckmann form (Koopmans and Beckmann [22]), the
objective is to find for two givenn × n matrices with real entriesA = (ai j ) and
B = (bi j ), 1≤ i , j ≤ n, a permutationπ ∈ Sn that minimizes the cost function

QAP(A, B, π)
.=

n∑
i=1

n∑
j=1

aπ(i)π( j)bi j . (2)

We refer the reader to the book by Lawler, Lenstra, Rinnooy Kan and Shmoys [25]
for more information on the TSP, and to the survey papers by Lawler [23,24], by
Burkard [5], and by Pardalos, Rendl, and Wolkowicz [31] for more information on the
QAP.

Neighborhoods.A neighborhoodN is a sequence〈N n〉n≥1 of sets of permutations with
N n ⊆ Sn. A neighborhoodN assigns to every permutationπ ∈ Sn the corresponding
neighborhoodN n(π) = {π ◦ φ | φ ∈ N n}. Note thatN n = N n(idn) holds, where idn
is the identity permutation inSn. As an example, consider theK-OPT neighborhood
that is the classical and probably best investigated neighborhood for the TSP: The set
K-OPTn ⊆ Sn consists of all tours that differ in at mostk edges from the identity
permutation idn. Consequently, for anyπ ∈ Sn the neighborhoodK-OPTn(π) consists
of all tours that differ in at mostk edges fromπ.

This is the time for our first disclaimer: The above definition of neighborhood does
by no means coverall concepts of a neighborhood that have been investigated in the
literature. The main drawback is that in our definition, a neighborhood is a strictly static
concept that only depends on the current permutationπ. In the literature, however,
neighborhoods are often dynamic structures that are time-dependent (e.g. Simulated
Annealing depends on the current temperature respectively current time), history de-
pendent (e.g. Tabu Search depends on the constructed tabu list) or data-depend (e.g.
subtour patching depends on the optimal assignment). Nevertheless, we believe that
our definition of neighborhood already captures a good deal of the difficulty and of the
complexity of this concept.

Local search.For combinatorial optimization problems of the type defined above, one
can build around each neighborhoodN a correspondinglocal searchprocedure as
follows:

1 Initialize π

2 Loop
3 Compute a permutationπnew ∈ N (π) that minimizes COST(πnew)

4 If COST(πnew) = COST(π) then
5 Output π and stop
6 Else setπ := πnew and continue
7 Forever
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Since there is only a finite number of possible permutations inSn, the procedure will
eventually halt. Of course, the critical part of this generic local search procedure is
line 3: How do we find the permutationπnew? If the size ofN (π) is relatively small (i.e.
constant or polynomial in the input size), then we can simply search throughN (π) by
enumerating all of its elements. On the other hand, if the size ofN (π) indeed is small,
then every iteration of the loop only considers a small number of potential solutions,
and this may lead to a very long sequence of search steps. Hence, it seems natural to
require that the neighborhoodN fulfills the following two properties:

(N1) The neighborhoodN is exponentially large, i.e. the cardinalities|N n| grow
exponentially withn.

(N2) One can compute in polynomial time for every permutationπ ∈ Sn, a per-
mutation in the neighborhoodN n(π) that minimizes the functionCOST(·).

If a neighborhood fulfills (N1) then we will call it anexponential neighborhood, and
if it fulfills (N2) then we will say that itcan be searched in polynomial time with
respect to functionCOST(·). In this paper we investigate a variety of combinatorial and
algorithmical questions that are related to neighborhoods fulfilling properties (N1) and
(N2) for the TSP and for the QAP.

Now is the time for our second disclaimer: We donot claim that every useful
local search algorithm has to be based on a neighborhood that fulfills the properties
(N1) and (N2). We only state that these properties are natural and hence are worth
investigating. In fact, most of the neighborhoods that have been studied till now and that
are successfully used in practice donot fulfill the property (N1), and most of them do not
exploit property (N2). Consider e.g. theK-OPT neighborhood that has been mentioned
before. TheK-OPT neighborhood was introduced by Croes [10] and by Lin [26], and
its variants fork = 2 andk = 3, 2-OPT and3-OPT, perform perfectly well in practical
applications. However, theK-OPT neighborhood only containsO(nk) permutations, and
hence its size is small and violates property (N1). Moreover, in practical applications
one in general does not search for thebestneighbor inK-OPT with minimum cost, but
only for somebetterneighbor inK-OPT with smaller cost. Hence, property (N2) is not
strictly needed in this approach.

Comparison of neighborhoods.In 1981, Sarvanov and Doroshko [34] designed a sim-
ple neighborhood calledASSIGNthat contains(n/2)! elements and that can be searched
with respect to the TSP inO(n3) time. Let us compare neighborhoodASSIGN to
the 3-OPT-neigborhood: Searching both neighborhoods with respect to the TSP takes
roughlyO(n3) time. However,ASSIGNcontains(n/2)! elements, whereas3-OPT only
containsO(n3) elements. Hence, a local search procedure based on3-OPT would have
to go through an exponential number of steps, just to compare the current permutation
against the same number of permutations as a local search procedure based on neigh-
borhoodASSIGN does in a single step! (However, we would not advice the reader to
incorporate this neighborhood in its current form into a local search procedure: it would
always get stuck in a local optimum after the first step).

In this paper, we define and study several neighborhoods of a similar flavor that
fulfill property (N1) and property (N2) for the TSP. We are interested in identifying the
borderline between neighborhoods that can and neighborhoods that can not be searched
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in polynomial time. We look at different ways for defining neighborhoods with nice
combinatorial structure via assignments, matchings in bipartite graphs, partial orders,
and trees. Moreover, we will provide some weak evidence, that unlessP = NP the
QAP does not possess neighborhoods that simultaneously fulfill (N1) and (N2).

Organization of the paper. Section 2 presents a short discussion of some results on
local search for the TSP from the literature. Section 3 introduces some notation and
basic definitions. Section 4 deals with exponential neighborhoods for the TSP (the
proofs of all theorems in this section can be found in Appendix A) and Sect. 5 deals with
exponential neighborhoods for the QAP (the proofs of the theorems are in Appendix B).
The discussion in Sect. 6 closes the paper.

2. Some well-known results on local search for the TSP

Extensive simulations by Johnson and McGeoch [19] suggest that2-OPT and3-OPTare
the champion local search algorithms for the Euclidean TSP. In the Euclidean plane with
the Euclidean metric, the expected number of steps to reach a local minimum for the
2-OPT-neighborhood is polynomially bounded byO(n10 logn) as shown by Chandra,
Karloff and Tovey [8] (cf. also Kern [20]). However, on randomly generated non-
Euclidean instancesK-OPT in general performs poorly. Moreover, Papadimitriou and
Steiglitz [29] design specific instances that have a single optimum tour but exponentially
many tours that are local optimums with respect to2-OPT and whose length is an
exponential factor away from the optimum.

Papadimitriou and Steiglitz [28] show that unlessP= NP, no local search algorithm
that fulfills property (N2) for the TSP can be exact (a local search algorithm is called
exactif every local optimum is also a global optimum). For an extensive discussion of
local search algorithms, see Chapt. 19 in the book by Papadimitriou and Steiglitz [30],
the case study by Johnson and McGeoch [19], and the book by Reinelt [32]. Finally,
we want to mention that the overall shortest TSP tour can be found in exponential-time
O(n22n) by the well-known dynamic programming algorithm of Held and Karp [17].

3. Basic definitions

The set of all permutations over{1,2, . . . ,n} is denoted bySn. With a slight abuse
of notation, we will sometimes denoteany sequence of pairwise distinct cities over
{1,2, . . . ,n} as a permutation. For a permutationπ, we adopt the notationπ =
〈x1, x2, . . . , xn〉 as abbreviation for “π(i) = xi for 1 ≤ i ≤ n”. The identity per-
mutation〈1,2,3 . . . ,n〉 in Sn is denoted byidn. For every permutationπ, we define
its reversepermutationπ− by π−(i) = π(n − i + 1) for 1 ≤ i ≤ n. A permutation
π is called acyclic shiftor a rotation if there exists an indexk ∈ {1, . . . ,n} such that
π = 〈k, k+ 1, . . . ,n,1, . . . , k− 1〉 holds.

For two permutationsπ1 = 〈x1, . . . , xn〉 andπ2 = 〈y1, . . . , ym〉, their concate-
nationπ1 ? π2 is the permutation〈z1, . . . , zn+m〉, wherezi = xi for 1 ≤ i ≤ n and
zn+ j = yj for 1≤ j ≤ m. For two sets51 and52 of permutations, we define

51 ? 52 = {π1 ? π2 | π1 ∈ 51, π2 ∈ 52} . (3)
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Clearly, the operation ‘?’ is an associative operation on sets of permutations. The
compositionπ ◦ φ of two permutationsπ,ψ ∈ Sn is defined via(π ◦ φ)(i) = π(φ(i)).

For a neighborhoodN n(π) of a permutationπ ∈ Sn, we will often simply write
“N (π)” and will omit the index, if the dimension is clear from the context. Moreover,
we will define most of our neighborhoods directly for all permutationsπ ∈ Sn and not
take the roundabout route to define it via the identity permutation.

To keep the notation as simple as possible, we will often use expressions of the
form (n/2)!, or

√
n as integer expressions. In doing this, we assume that the occurring

fractions are always rounded up or rounded down to integers in an appropriate way.

4. Exponential neighborhoods: the TSP

This section discusses combinatorial aspects and complexity aspects of optimizing over
strongly structured exponential neighborhoods for the TSP. Essentially, we will deal
with three groups of neighborhoods: Neighborhoods that are based on assignments and
matchings (Sect. 4.1), neighborhoods that are based on partially ordered sets (Sect. 4.2),
and neighborhoods that are based on tree structures (Sect. 4.3). Moreover, Sect. 4.4 dis-
cusses some other, ‘unclassified’ approaches to exponential neighborhoods, and Sect. 4.5
draws some conclusions and poses open problems.

The proofs of all theorems are to be found in Appendix A.

4.1. Neighborhoods that are based on assignments and matchings

Let us start our investigations with a simple neighborhood calledASSIGNthat has been
introduced in 1981 by Sarvanov and Doroshko [34]. Formally,

ASSIGNn = {φ ∈ Sn | φ(2i − 1) = 2i − 1 for all i = 1, . . . , dn
2e}. (4)

In other words, a permutationφ is in ASSIGN(π) if and only if one can obtainφ from
π by fixing all cities in the odd positions at their places, then removing the cities in the
even positions and finally reinserting them in arbitrary order into the empty positions.
It can easily be seen that computing the cheapest tour inASSIGN(π) corresponds to
solving a standard assignment problem on ann

2 × n
2 cost matrix. Since this assignment

problem can be solved inO(n3) time by standard methods (see e.g. Papadimitriou and
Steiglitz [30]), we arrive at the following result.

Proposition 1. (Sarvanov and Doroshko [34])
The neighborhoodASSIGNn contains(n/2)!permutations and can be searched inO(n3)

time with respect to the TSP.
ut

There are several natural generalizations of neighborhoodASSIGN that immediately
come to one’s mind:

Usuario
Realce
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• E.g. one may consider the set of permutations that result from arbitrarily permuting
the cities within the even places and simultaneously permuting the cities within
the odd places. This yields the neighborhoodASSIGN-EO that contains(n/2)!2
permutations, a much larger neighborhood thanASSIGN(the “EO” in ASSIGN-EO
stands forEVEN and forODD).
• Another generalization arises from dividing the cities into three classes, instead of

only two classes. Hence, let us define that a permutationφ is in theASSIGN-MOD3-
neighborhood ofπ, if and only ifπ andφ agree in the positions whose numbers are
divisible by 3, whereas the cities in the positions that are≡ 1(mod 3) are permuted
arbitrarily within their places, and the cities in the positions that are≡ 2(mod 3)
are also permuted arbitrarily within their places.ASSIGN-MOD3 contains(n/3)!2
permutations.
• Finally, we define that a permutationφ is in theASSIGN-2/3-neighborhood ofπ, if

and only ifπ andφ agree in the positions that are divisible by 3, whereas the cities
in the positions that are not divisible by 3 may be permuted arbitrarily.ASSIGN-2/3
contains(2n/3)! permutations.

The three generalizationsASSIGN-EO, ASSIGN-MOD3, andASSIGN-2/3all have much
larger cardinalities than neighborhoodASSIGNand hence are a clear improvement over
ASSIGN with respect to property (N1). However, unlessP = NP holds, they can not
fulfill property (N2) with respect to the TSP as the following theorem demonstrates.

Theorem 1. It is NP-hard to minimize for a given input matrixC = (ci j ) the function
TSP(C, π) over the set of

(i) permutationsπ ∈ ASSIGN-EO,
(ii) permutationsπ ∈ ASSIGN-MOD3,
(iii) permutationsπ ∈ ASSIGN-2/3.

ut
An observation of Gutin [16] yields the following slight improvement over neighbor-

hoodASSIGN: Forπ ∈ Sn, call the firstn/2+√n/8 cities inπ thefixedcities and call
the lastn/2−√n/8 cities themovingcities. A permutationφ is in ASSIGN-GUTIN(π)

if and only if one can getφ fromπ by first removing the moving cities fromπ and then
reinserting them arbitrarily between the fixed cities in such a way that between any pair
of consecutive fixed cities, at most one moving city is inserted. Again we observe that
computing the cheapest travelling salesman tour inASSIGN-GUTIN(π) can be done in
O(n3) time by solving an assignment problem. Simple calculations reveal that the size
of neighborhoodASSIGN-GUTIN is �((n/2)!(1+ ε)√n), whereε > 0 is some small,
positive real that does not depend onn.

Another way of representing neighborhoods that is closely related to assignments, is
the representation via matchings in a bipartite graph: LetH = (I ∪ I ′, F) be a bipartite
graph withF ⊆ I × I ′ whereI = {1, . . . ,n} corresponds to the set of cities and where
I ′ = {1′, . . . ,n′} corresponds to the set of positions in some tour. Fori ∈ I , we denote
by0H(i) the set of nodes inI ′ that are adjacent toi . We define the neighborhood

MATCHINGH = {φ ∈ Sn | (φ(i), i ′) ∈ F for all i = 1, . . . ,n}. (5)
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In other words, the positions in0H(i) tell the potential positions of cityi in a neighboring
permutation. E.g. in this model, the neighborhoodASSIGN may be represented via
a bipartite graph that contains all the edges(i , i ′) with odd i and all the edges(i , j ′)
with eveni and j . See Fig. 1 for an illustration.
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π = 〈1, 3, 2, 4, 6, 7, 8, 5〉

Fig. 1. A bipartite graphH = (I ∪ I ′, F). The bold solid lines form a matching that encodes the depicted
permutationπ in MATCHINGH

Define theextensionext(i) of a nodei ∈ I as the value max{ j | j ′ ∈ 0H(i)} −
min{ j | j ′ ∈ 0H(i)}, and define the extension ext(H) of the graphH as maxi∈I ext(i).
Define theout-degreeout-deg(H) of the graphH as the maximum|0H(i)| over all
i ∈ I . Balas and Simonetti [3] proved the following result with the help of dynamic
programming.

Proposition 2. (Balas and Simonetti [3])
For a bipartite graphH with extensionext(H) = d, the neighborhoodMATCHINGH

can be searched inO(4dn) time with respect to the TSP.
ut

Hence, if the extension of the graphH is small, i.e.d = O(logn), then the neighborhood
MATCHINGH is easy to search. Perhaps somewhat surprisingly, an analogous result does
not hold for graphsH with small out-degree:

Theorem 2. It is NP-hard to minimize for a given input matrixC = (ci j ) and for
a given bipartite graphH with out-deg(H) = 2, the functionTSP(C, π) over the set of
all permutationsπ ∈ MATCHINGH.

ut

4.2. Neighborhoods that are based on partial orders

In this section, we consider apartial order � on the setI = {1, . . . ,n} of cities.
Two cities i and j are calledcomparableif i � j or j � i holds, and they are
called incomparable, otherwise. Ananti-chainof a partial order is a set of pairwise
incomparable elements. TheDilworth numberof a partial order is the cardinality of its
largest anti-chain. A permutationπ ∈ Sn is alinear extensionof the order� if and only
if i � j impliesπ(i) ≤ π( j) for all 1 ≤ i , j ≤ n. By LINEXT(�) we denote the set of
all linear extensions of the order�.
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Theorem 3. For a given partial order� which is defined on the set of cities and which
has Dilworth numberd ≥ 2, and for a given distance matrixC = (ci j ), the function
TSP(C, π) can be minimized over the permutationsπ ∈ LINEXT(�) in O(nd) time.

ut
Balas and Simonetti [3] deal with a special case of finding the shortest tour in a neigh-
borhoodLINEXT(�): In their special case, the partial order is based on a parameterk,
andi � j holds for two citiesi and j if and only if i + k ≤ j . It is easy to see that the
Dilworth number of the Balas-Simonetti order equalsk, and so our Theorem 3 implies
the existence of anO(nk) solution algorithm. However, besides having a small Dilworth
number, the Balas-Simonetti order also fulfills other strong combinatorial properties: It
only hasO(2kn) distinct anti-chains, and these anti-chains can be found and enumerated
efficiently, without much additional overhead. A dynamic programming approach that
is based on these anti-chains yields anO(k22kn) solution algorithm.

In the literature (see e.g. the survey article by Möhring [27]), one can find many
special classes of computationally tractable partial orders: interval orders, series-parallel
orders, N-free orders, orders of bounded height, two-dimensional orders, orders of
bounded dimension, etc. We note that all these classes contain the empty partial order
as a special case. Since the set of linear extensions of the empty partial order equalsSn,
these classes in general will not lead to neighborhoods that can be searched in polynomial
time with respect to the TSP.

4.3. Neighborhoods that are based on tree structures

A permutation treeT over the universal set of citiesI = {1, . . . ,n} is a rooted, ordered
tree whoseleavesare pairwise distinct elements ofI . The set of leaves inT is denoted
by LEAF(T). Everyinterior node has at least two sons; an interior nodev with d sons
is labeled with a non-empty set9(v) ⊆ Sd of permutations. With every permutation
treeT, we associate a setTREE(T) of permutations ofLEAF(T) as follows: IfT consists
of only a single leafu ∈ I , thenTREE(T) = 〈u〉. Otherwise, letv1, . . . , vd denote the
sons of the rootr of T, ordered from left to right, and letTi denote the maximal subtrees
rooted atvi , 1≤ i ≤ d. Define

TREE(T) =
⋃

ψ∈9(v)
TREE(Tψ(1)) ? TREE(Tψ(2)) ? · · · ? TREE(Tψ(d)). (6)

A well-known special case of permutation trees are thePQ-treesintroduced by Booth
and Lueker [4]: A PQ-tree is a permutation tree whose interior nodes all are either
P-nodesor Q-nodes; for every P-nodev with d sons,9(v) = Sd holds, and for every
Q-nodev with d sons,9(v) = {idd, id−d } holds. Burkard, Dĕıneko, Woeginger [6]
investigated the problem of minimizing the functionTSP(C, π) over the permutations
represented by a given PQ-tree. A simple modification of their approach yields the
following theorem.

Theorem 4. For a permutation treeT with f = maxv∈T |9(v)|, and for a distance
matrix C = (ci j ), the shortest TSP tour for matrixC contained inTREE(T) can be
computed inO( fn4) overall time.

ut
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Fig. 2. A permutation tree that represents the set of pyramidal tours inSn. The root is the leftmost P-node.
All interior nodesv have9(v) = S2

The classical example for a neighborhood that can be represented via permutation trees
is the neighborhoodPYRAMID that is formed by thepyramidal permutations(cf. e.g.
Gilmore, Lawler, and Shmoys [14]).

PYRAMID n = {φ = 〈i1, i2, . . . , i k,n, j1, . . . , jn−k−1〉 |
k ≥ 0, i1 < i2 < · · · < i k, j1 > j2 > · · · > jn−k−1}.

In other words, a permutation is pyramidal if it first goes through the cities in increasing
order until cityn is reached, and then goes through the remaining cities in decreas-
ing order. For example, the permutation〈1,2,5,7,8,9,6,4,3〉 is pyramidal, whereas
the permutation〈1,8,3,4,2,5,6,7〉 is not. It is well-known that the neighborhood
PYRAMID n contains 2n−1 permutations and that minimizing the functionTSP(C, π)over
the setPYRAMID n can be done inO(n2) time by dynamic programming (Klyaus [21]
or Gilmore, Lawler, and Shmoys [14]).

In the setting of permutation trees, we observe that the neighborhoodPYRAMID can
be represented through a permutation tree of the form as depicted in Fig. 2.

Apparently, Sarvanov and Doroshko [33] were the first to apply the set of pyramidal
permutations as an exponential neighborhood in a local search algorithm for the TSP.
Carlier and Villon [7] investigated the neighborhoodPYRAMID -CV that consists of all
permutations of the formπ◦φwhereπ is a pyramidal permutation and whereφ is a rota-
tion. In their computational experiments on the resulting local search algorithm, Carlier
and Villon observed that their heuristic performs much better than2-OPT, and that it
even is competitive withK-OPT: Every local optimum for neighborhoodPYRAMID -CV
is also a local optimum for2-OPT. Moreover, our computational experiments seem to
indicate that most of the times when the local search heuristic gets stuck in a local
optimum,3-OPT is not able to improve on this local optimum. The following theorem
lends further support to these observations.

Theorem 5. For symmetric distance matrices, every permutationπ ∈ Sn fulfills the
equation

| PYRAMID -CV(π) ∩ 3-OPT(π) |
| 3-OPT(π) | = 3

4
+ o

(
1

n

)
(7)

In other words, neighborhoodPYRAMID -CV covers at least 75% of the permutations
contained in neighborhood3-OPT.

ut
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π = 〈3, 2, 4, 1, 11, 8, 9, 10, 6, 7, 5〉

Fig. 3. Reversing all the intervals yields the twisted permutation

Another example for a neighborhood that can be represented via permutation trees
are thetwisted sequences. Aurenhammer [2] calls a permutationπ a twisted sequence
if and only if there exists a permutation treeT such that (i)π ∈ TREE(T), (ii) id ∈
TREE(T), and (iii) every interior nodev with d sons has9(v) = {idd, id−d }; note that
this definition does not depend on a specific permutation treeT. Another, equivalent
way of defining twisted sequences is as follows: Start with the identity permutation
〈1,2, . . . ,n〉 and choose a set of intervals over[1, . . . ,n] such that for every pair of
intervals either one of them contains the other one, or the two intervals are disjoint. Then
reverse (= twist) for every interval the order of its elements. A permutation is a twisted
sequence if and only if it can be derived from the identity permutation via such a reversal
process. Observe that e.g.〈3,2,4,1〉 is a twisted sequence, whereas〈1,3,5,2,4,6〉 is
not. See Fig. 3 for another illustration.

We denote byTWISTED ⊆ Sn the set that consists of all twisted sequences. It is
easy to see that for everyn, the neighborhoodTWISTEDn contains at least�(2n) and
at mostO(6n) permutations. Moreover, twisted sequences can be recognized inO(n)
time (Aurenhammer [2]).

Theorem 6. For a given distance matrixC = (ci j ), the functionTSP(C, π) can be
minimized over the permutationsπ ∈ TWISTED in polynomial timeO(n7).

ut

4.4. Other neighborhoods for the TSP

In this section we discuss several approaches to exponential neighborhoods that did not
fit into the framework of the preceding three sections: a geometric approach via Jordan
curves, a graph theoretic approach via Hamiltonian cycles in edge-weighted graphs, and
a combinatorial approach via transpositions.

Let us turn to so-calledJordan sequencesor Jordan permutations, a geometrically
motivated concept. A permutationπ = 〈x1, . . . , xn〉 ∈ Sn is called a Jordan permutation
if and only if there exists a simple, non-selfintersecting curve in the Euclidean plane (i.e.
a Jordan curve) that (i) goes through the points(x1,0), (x2,0), . . . , (xn,0) in precisely
this order and (ii) does not intersect thex-axis in any other points. See Fig. 4 for an
illustration.

This type of permutation can be recognized inO(n) time, see Hoffmann, Mehlhorn,
Rosenstiehl, and Tarjan [18]. We denote byJORDAN ⊆ Sn the set that consists of all
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Jordan permutations. For everyn, the neighborhoodJORDANn contains at least�(2n)

and at mostO(8n) permutations [18].

Open Problem 1. What is the computational complexity of minimizing for a given input
matrix C = (ci j ) the functionTSP(C, π) over the set of permutationsπ ∈ JORDAN?
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Fig. 4.A Jordan curve that intersects thex-axis in 8 points and one of the corresponding Jordan permutations

Another approach to strongly structured exponential neighborhoods for the TSP
is via weighted Hamiltonian cycles in graphs. LetH be a class of specially structured
graphs on which the weighted Hamiltonian cycle problem is solvable in polynomial time.
For a graphH ∈ H on n vertices that are numbered 1, . . . ,n, let HAM CYC(H) ⊆ Sn
denote the set of all permutationsπ ∈ Sn for which the sequenceπ(1), π(2), . . . , π(n)
forms a Hamiltonian cycle inH .

There are quite a few such graph classesH that contain graphs with an exponential
number of Hamiltonian cycles. Cornuejols, Naddef, and Pulleyblank [9] show that
a minimum weight Hamiltonian cycle in a Halin graph can be computed in polynomial
time. Glover and Punnen [15] construct a class of graphs onn vertices for which one
can compute inO(n) time a weighted Hamiltonian cycle whose weight is less or equal
to the weight of2(12n/3) other Hamiltonian cycles in the graph. The results of Fonlupt
and Nachef [12] can be applied in a similar way to yield exponential neighborhoods.

Finally, we come to sets of permutations that are defined viatranspositions. It is
well-known that every permutationπ ∈ Sn can be factored into a sequence of cycles of
length two, so-called transpositions. This means thatπ = (i`, j`)(i`−1, j`−1) · · · (i1, j1)
holds with the following interpretation: If one starts with the identity permutation idn,
and first swaps elementi1 with elementj1, then swaps the elementsi2 and j2, and so
on, then one will finally end up with permutationπ. The sequence in which these swaps
are performed is essential, and this factorization is not unique. However, for every such
factorization ofπ into transpositions, the number of transpositions in the factorization
has the same parity. The setAn ⊂ Sn consists of the permutations that can be factored
into an even number of transpositions. It is easy to see that|An| = 1

2n! holds, and
thusAn forms an exponential neighborhood. Of course, it is NP-hard to searchAn with
respect to the TSP.
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4.5. Some conclusions on neighborhoods for the TSP

To summarize, in the preceding sections we have constructed quite a few exponential
neighborhood that can be searched in polynomial time with respect to the TSP. Most of
these neighborhoods had sizes2(γ n) for someγ > 1, and just a few of them (variants
of neighborhoodASSIGN) were of larger size. Our results seem to indicate that it will
be difficult to obtain a substantial improvement over neighborhoodASSIGN. Hence, we
formulate the following two open questions.

Open Problem 2. Does there exist an exponential neighborhoodN that can be searched
in polynomial time with respect to the TSP and that fulfills for all sufficiently largen

(a) |Nn| ≥ (αn)! for some fixedα > 1
2?

(b) |Nn| ≥ β · n! for some fixedβ > 0?

We conjecture that the first question has answer YES, and that the second question has
answer NO (of course, under the assumption thatP 6= NP).

Theorem 7. LetN be an exponential neighborhood that can be searched in timef(n)
with respect to the TSP. Then|Nn| ≤ ( 2

n f(n))n holds for alln.
ut

An immediate consequence of this theorem is that any exponential neighborhood that
fulfills the conditions in Open Problem 2.(a) and (b) cannot be searched in linear time
O(n) with respect to the TSP. This also answers a question of Gutin [16].

5. Exponential neighborhoods: the QAP

In this section, we go once again through the list of neighborhoods that were defined
in the preceding section for the TSP, and we discuss and investigate them with respect
to the QAP. The outcome of these investigations is disastrous: UnlessP = NP, all
known exponential neighborhoods do not fulfill property (N2), i.e. can not be searched
in polynomial time with respect to the QAP. The proofs of the theorems can be found
in Appendix B.

First, let us recall that the TSP is a special case of the QAP. Hence, all NP-
completeness results stated in Sect. 4 immediately carry over to the QAP. Next, let
us introduce yet another neighborhood, calledTWIN, that will turn out to be useful in
this section. The neighborhoodTWIN is only defined for even numbersn.

TWINn = {π ∈ Sn | {π(2i − 1), π(2i)} = {2i − 1,2i } for i = 1, . . . ,n/2}. (8)

Whereas it is easy to searchTWIN in O(n) time with respect to the TSP, we have the
following fundamental negative result for the QAP.

Theorem 8. The problem of minimizing the functionQAP(A, B, π) over all permuta-
tionsπ ∈ TWIN for given input matricesA = (ai j ) and B = (bi j ) is NP-hard, even if
A and B both are 0-1-matrices.

ut
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Let us start our discussion with the neighborhoods based on assignments and match-
ings as introduced in Sect. 4.1. In this area, the known polynomial time results for the
TSP are the result on neighborhoodASSIGNin Proposition 1, and the result on neighbor-
hoodMATCHINGH with bipartite graphs of constant extension in Proposition 2. First,
the proof of Theorem 9 below shows that neighborhoodASSIGN cannot be searched
in polynomial time with respect to the QAP. Secondly, for bipartite graphsH with
ext(H) = 1, the neighborhoodMATCHINGH is uninteresting since it contains at most
one permutation. Finally, searching the neighborhoodMATCHINGH with respect to the
QAP is an NP-complete problem for bipartite graphsH with ext(H) = 2: The neigh-
borhoodTWIN can be represented asMATCHINGH with a graphH with ext(H) = 2.

Theorem 9. It is NP-hard to minimize for given input matricesA = (ai j ) andB = (bi j )

the functionQAP(A, B, π) over the permutationsπ ∈ ASSIGN.
ut

Next, let us turn to neighborhoods based on partial orders as discussed in Sect. 4.2.
The only polynomial time result that we had for the TSP in this area is the result
on neighborhoodLINEXT(�) for partial orders with bounded Dilworth number in
Theorem 3. However, partial orders� with Dilworth number 1 are total orders, and
for them the neighborhoodLINEXT(�) only contains a single permutation. On the
other hand, the neighborhoodTWIN can be represented asLINEXT(�) of a partial
order� with Dilworth numberd = 2: Let i � j if and only if bi/2c ≤ b j/2c. Hence
by Theorem 8, searching the neighborhoodLINEXT(�) for partial orders of bounded
Dilworth number≥ 2 with respect to the QAP is an NP-complete problem.

Finally, we come to neighborhoods that are based on tree structures (cf. Sect. 4.3).
In this area, we had four polynomial time results for the TSP: for the neighborhood
TREE(T) if maxv∈T |9(v)| is polynomially bounded inn (Theorem 4), for the neigh-
borhoodPYRAMID , for the neighborhoodPYRAMID -CV, and for the neighborhood
TWISTED (Theorem 6).

First, let us discuss neighborhoods that are based on permutation trees. Permutation
treesT for which|9(v)| = 1 for allv ∈ T lead to uninteresting neighborhoodsTREE(T)
that only contain a single permutation. On the other hand, the neighborhoodTWIN may
be represented via a permutation treeT for which|9(v)| ≤ 2 holds for allv ∈ T. Hence,
there is no hope for getting non-trivial positive results on the QAP via permutation
trees. Theorem 10 shows that also the neighborhoodsPYRAMID , PYRAMID -CV, and
TWISTED can not help in reaching this goal. Also the neighborhoodJORDAN whose
status with respect to the TSP remained unsettled (cf. Open Problem 1) is NP-hard to
search with respect to the QAP.

Theorem 10. It is NP-hard to minimize for given input matricesA = (ai j ) and
B = (bi j ) the functionQAP(A, B, π) over

(i) the permutationsπ ∈ PYRAMID ,
(ii) the permutationsπ ∈ PYRAMID -CV,
(iii) the permutationsπ ∈ TWISTED,
(iv) the permutationsπ ∈ JORDAN.

ut
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To summarize the results of this section, we notice that unlessP = NP, all expo-
nential neighborhoods treated in this paper do not fulfill property (N2) with respect to
the QAP. Hence, the following conjecture seems to be reasonable.

Conjecture 1. Under the assumptionP 6= NP: For every neighborhoodN that can
be searched in polynomial time with respect to the QAP, there exists a polynomial
p : IN→ IN such that|Nn| = O(p(n)).

6. Discussion

In this paper we considered exponential neighborhoods for the TSP and for the QAP.
For the TSP, we investigated a variety of neighborhoods that can be defined in a sim-
ple way via assignments, matchings in bipartite graphs, partial orders, trees and other
combinatorial structures, and we were able to identify several properties of these com-
binatorial structures that lead to polynomial time optimization algorithms. For the QAP,
we encountered quite a different situation: Every exponential neighborhood that we
considered in this paper provably leads to an NP-complete optimization problem for
the QAP. In fact, it is rather easy to come up with other exponential neighborhoods
over which the QAP cannot be solved efficiently (this part of our work, however, will
remain unpublished). These investigations naturally lead us to Conjecture 1. Settling
Conjecture 1 and Problem 2 are also the main questions that are left open in this paper.

Most of our polynomial time results should be considered merely as first versions
or as sketches of polynomial time algorithms. We were mainly interested in deriving
polynomial time results and not in getting a polynomial running time with a small
exponent. Currently, we are performing large scale computational experiments on which
we will report elsewhere.

A question that we did not attack is how to actually measure the quality of a neigh-
borhood for a local search procedure. Exponential size of a neighborhood clearly isnot
sufficient to guarantee a highly efficient local search algorithm. Another important pa-
rameter is e.g. the average time of going from one permutation to another permutation
within the local search (cf. Tovey [35]). Overall, we feel that we only scratched the
surface of this area, and we hope that this paper will be the starting point of a systematic
theoretical study of exponential neighborhoods.

Acknowledgements.We thank Eranda Çela, Richard Congram, Bettina Klinz, Chris Potts, and Steef van de
Velde for discussions, for helpful comments, and for pointing out several minor mistakes in an earlier version
of this paper.

A. Appendix: Proofs of the theorems on the TSP

Proof of Theorem 1(i).The proof is done by a simple reduction from the standard trav-
elling salesman problem. In the decision version of the standard TSP, the input consists
of a non-negativen × n distance matrixD = (di j ) together with an integer boundd∗.
The question is whether there exists a permutationφ ∈ Sn such thatTSP(D, φ) ≤ d∗.
We construct a 2n× 2n matrix C as follows:
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• For all 1≤ i ≤ n, c2i−1,2i = 0

• For all 1≤ i ≤ n and all` 6= 2i , c2i−1,` = ∞
• For all 1≤ i ≤ n, c2i,2i−1 = ∞
• For all 1≤ i 6= j ≤ n, c2i,2 j−1 = di j

• For all 1≤ i 6= j ≤ n, c2i,2 j = ∞
We claim that there exists a permutationφ ∈ Sn such thatTSP(D, φ) ≤ d∗ if and only
if there exists a permutationπ ∈ ASSIGN-EO such thatTSP(C, π) ≤ d∗:

First, assume that there exists a permutationπ∈ASSIGN-EOsuch thatTSP(C,π)≤d∗.
In π, the only possible successor for a city 2i − 1 is the city 2i . From this it can be
seen that the tourψ defined as〈π(2)/2, π(4)/2, . . . , π(2n−2)/2, π(2n)/2〉 constitutes
a travelling salesman tour of cost≤ d∗ for D. Vice versa, ifTSP(D, φ) ≤ d∗ then the
permutationψ = 〈2π(1) − 1,2π(1),2π(2)− 1,2π(2), . . . ,2π(n) − 1,2π(n)〉 yields
TSP(C, π) ≤ d∗.

ut ut
Proof of Theorem 1(ii) and (iii).We only give the proof for statement (iii). The proof
for statement (ii) will follow from the observation that in the instance constructed
below, all feasible permutationsπ ∈ ASSIGN-2/3 with TSP(C, π) = 0 also belong to
ASSIGN-MOD3.

The proof is done by a reduction fromPARTITION INTO TRIANGLES (cf. Garey and
Johnson [13]) which is defined as follows. The input consists of a tripartite undirected
graphG = (U ∪ V ∪W, E) with tripartitionU = {u1, . . . ,uk}, V = {v1, . . . , vk}, and
W = {w1, . . . , wk}, and withE ⊆ (U × V) ∪ (V ×W) ∪ (W× U). The question is
whether there exists a partition of the node setU ∪V ∪W into triples(u, v,w) such that
(u, v), (v,w) and(w,u) all belong toE. PARTITION INTO TRIANGLES is NP-complete.

Setn = 6k and construct ann×n distance matrixC as follows. For every 1≤ i ≤ k,
the cities 6i −3 and 6i correspond to nodeui , the city 6i −2 corresponds to nodevi , the
city 6i − 1 corresponds to nodewi , and the cities 6i − 4 and 6i − 5 are dummy cities.
The distances are defined as follows (the indices are taken modulo 6k, i.e. city 6k+ 1
equals city 1 and so on):

• For all 1≤ i ≤ k, c6i−6,6i−5 = c6i−5,6i−4 = c6i−4,6i−3 = 0. The distances between
cities 6i −5 and 6i −4 and all other cities are 1. Moreover, the distances from 6i −6
to all other cities are 1.

• For all 1≤ i ≤ k, c6i−3,6 j−2 = 0 if and only if in G there is an edge betweenui

andv j . The distances from city 6i − 3 to all other cities are 1.

• For all 1≤ i ≤ k, c6i−2,6 j−1 = 0 if and only if in G there is an edge betweenvi

andw j . The distances from city 6i − 2 to all other cities are 1.

• For all 1≤ i ≤ k, c6i−1,6 j = 0 if and only if in G there is an edge betweenwi
andu j . The distances from city 6i − 1 to all other cities are 1.

It can be shown that there exists a permutationπ ∈ ASSIGN-2/3 with TSP(C, π) = 0 if
and only if the instance ofPARTITION INTO TRIANGLES has answer “Yes”.

ut ut
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Proof of Theorem 2.The proof is done by a reduction from the NP-completeMAX

CUT problem in cubic graphs (cf. Garey and Johnson [13]). This version of theMAX

CUT problem takes as input an undirected simple graphG = (V, E) where every node
has degree three, together with an integerq. The goal is to decide whether there exists
a partitionV = V1 ∪ V2 of the nodes such that at leastq of the edges inE have their
endpoints in different parts of the partition. Note that in the cubic graphG, 3|V| = 2|E|
holds.

For every nodev and for every incident edgee = (v,w) ∈ E, we introduce two
corresponding cities that are denoted byX1(e, v) andX2(e, v). For every nodev ∈ V
with incident edgese1, e2, and e3, we introduce three positionsP(e1, v), P(e2, v),
P(e3, v) and three positionsQ1(v), Q2(v), Q3(v) that may only be occupied by the six
cities that correspond to this node. Then the two matchings in the cycle

X1(e1, v)− P(e1, v)− X2(e1, v)− Q1(v)− X1(e2, v) − P(e2, v)−
−X2(e2, v)− Q2(v)− X1(e3, v)− P(e3, v) − X2(e3, v)− Q3(v)− X1(e1, v)

encode the two feasible assignments between the cities corresponding tov and the
positions corresponding tov (actually this cycle is part of the bipartite graphH that
we are going to define below). Moreover, there will be 3|E| dummy citiesand 3|E|
dummy positions. Every dummy city can be assigned to a unique corresponding dummy
position. The introduced cities form the setI of the bipartite graphH , and the introduced
positions form the setI ′. The edge setF contains only edges that arise from the cycles
defined above, and edges that connect dummy cities to their unique dummy positions.

Next, we specify the exact ordering of the positions. In this ordering, first there
comes an alternating sequence of 3|V| dummy positions and the 3|V| positionsQ`(v)

with 1≤ ` ≤ 3 andv ∈ V. Then there comes an alternating sequence of the remaining
|E| dummy positions and|E| pairs of positionsP(∗, ∗): For every edgee= (v,w) ∈ E,
the sequence contains a corresponding pair of positions that consists of the two positions
P(e, v) and P(e,u) next to each other. Finally, we specify the distance matrixC that
describes the distances of the cities to each other.

• For every edgee= (v,w) ∈ E, the two citiesX1(e, v) andX1(e,u) are at distance 1
to each other, and also the two citiesX2(e, v) andX2(e,u) are at distance 1 to each
other.

• All other distances are 0; note that especially every dummy city is at distance 0 to
all other cities.

This completes the description of the TSP instance and of the bipartite graphH . The
two possible matchings between the cities corresponding to a nodev and the positions
corresponding tov encode whether nodev is put into node setV1 or into node setV2.
It can be shown that the instance ofMAX CUT has answer “Yes” if and only if there
exists a permutationπ ∈ MATCHINGH such thatTSP(C, π) takes a value of at most
|E| − q.

ut ut
Proof of Theorem 3.Throughout the proof of this theorem, we consider the Dilworth
numberd of the partial order to be a constant. By the theorem of Dilworth [11], the set
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I of cities can be partitioned intod linearly ordered chainsI1, . . . , Id. Moreover, such
a chain partition can be computed in timeO(nd). For two citiesi 6= j with i � j , we
say that cityi is thedirect predecessorof city j in a chain partition, if (i) citiesi and j
belong to the same chainI` and if (ii) there does not exist a cityk ∈ I`, i 6= k 6= j with
i � k � j .

We generate the acyclic, weighted, directed graphG = (V, A) where every node is
a (d+ 1)-tuple from

I ∪ {∅} × I1 ∪ {∅} × I2 ∪ {∅} × · · · × Id ∪ {∅}, (9)

such that the first component of the(d + 1)-tuple also occurs at a (unique) other
coordinate. This first component is called theheadof the node, the otherd components
are called thebody componentsof the node. Hence, graphG containsO(nd) nodes.
There is an arc from a source node to a target node if and only if

• the two nodes have distinct heads,

• the two nodes agree in exactlyd− 1 of the body components, but not in that body
component that corresponds to the chainI` containing the head of the target node,

• in this `th body component, the component of the target node equals the head of
the target node, and the corresponding component of the source node is the direct
predecessor of the head of the target node.

The length of this arc equals the distance from the head of the source node to the head
of the target node. Clearly, the number of arcs inG is O(nd). Intuitively speaking, every
node in this graph encodes the starting segment of some permutation inLINEXT(�):
The head describes the last city visited by this starting segment, and the body component
for chain I` gives the last city in chainI` that has been visited by the starting segment.
If a source node is connected to a target node by an arc, this means that the starting
segment that corresponds to the target node can be obtained from the starting segment
that corresponds to the source node by adding one additional city. If the position
corresponding to some chainI` equals “∅”, then the starting segment has not yet
visited any city from this chain.

The shortest TSP tour inLINEXT(�) decomposes into a Hamiltonian path that starts
in a cityx without predecessor in the partial order and ends in a cityy without successor,
and into the edge(y, x). With this it is clear that in order to solve this version of the TSP,
one only has to perform a shortest path computation in the graphG for every pair of
cities x without predecessor andy without successor. Since there are onlyO(d2) such
pairs and since every shortest path can be computed inO(nd) time, this leads to the
desiredO(nd) time solution algorithm.

ut ut
Proof of Theorem 4.The node set of the permutation treeT is denoted byV; hence,
V consists ofn leaves and ofO(n) interior nodes. Forv ∈ V, denote byT(v) the
maximal subtree rooted at nodev. For a leafa in T(v), we denote byT(v,a) the tree
T(w) wherew is the unique son ofv with a in LEAF(T(w)). For an interior nodev, two
leavesa andb in LEAF(T(v)) are said to beseparated byv, if and only if they are in
two distinct subtrees rooted at sons ofv. We denote this by(a,b) ∈ SEP(v). For the
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sake of completeness, we also define that for every leafv, (v, v) ∈ SEP(v) holds. It can
easily be seen that the overall number of triples(v,a,b) with (a,b) ∈ SEP(v) equalsn2

(cf. [6]).
For any interior nodev and for any two leavesa andb in T(v) with (a,b) ∈ SEP(v),

define two valuesX[v; a,b] andY[v; a,b] as follows:X[v; a,b] is the length of the
shortest Hamiltonian path inTREE(T(v)) that starts ina and ends inb while obeying
all restrictions imposed by the permutation tree.Y[v; a,b] is the length of the shortest
Hamiltonian path through the cities inLEAF(T(v,a)) ∪ {b} that starts ina and ends in
b and whose initial part belongs toTREE(T(v,a)). If v is a leaf, defineX[v; v, v] = 0
and Y[v; v, v] = 0. Our goal is to compute all valuesX[v; ∗, ∗] and Y[v; ∗, ∗]. All
computations are done in a bottom-up fashion, starting at the leavesv of T and moving
up towards the root. When we are dealing with a father, for all of its sonsw the values
X[w; ∗, ∗] have already been computed.

We only need to consider the case wherev is an interior node with sonsv1, . . . , vd
ordered from left to right. Fora ∈ LEAF(T(v)) definevi to be the root of the subtree
T(v,a). Then the equation

Y[v; a,b] = min
{

X[vi ; a, z] + cz,b | z ∈ LEAF(T(vi ))
}

(10)

holds. Next, let us computeX[v; a,b]. Consider some fixed permutationψ ∈ 9(v)with
a ∈ LEAF(T(vψ(1))) andb ∈ LEAF(T(vψ(d))), and for 2≤ k ≤ d, consider arbitrary
nodeszk ∈ LEAF(T(vψ(k))). Then

X[v; a,b] ≤ Y[v; a, z2] +
d−1∑
k=2

Y[v; zk, zk+1] + X[vψ(d); zd,b] (11)

holds, and in factX[v; a,b] equals the minimum of the righthand side taken over all
such choices forψ andz2, . . . , zd. For every fixedψ, computing the corresponding
minimum over choices forz2, . . . , zd can be done as a shortest path computation
in an appropriate underlying graph withO(n) nodes andO(n2) edges. This can be
done by standard techniques inO(n2) time, and hence, the total time for computing
X[v; a,b] is O(|9(v)|n2). Since there are onlyO(n2) valuesX[v; a,b] andY[v; a,b]
that have to be computed, the overall time for computing all these values isO( fn4)

where f = maxv∈T |9(v)|.
Finally, note that the shortest TSP tour inTREE(T) decomposes into a single edge

(1, x) and a shortest Hamiltonian path through{1, . . . ,n} that starts in cityx and ends
in city 1, for an appropriate cityx. Hence, ifr is the root ofT then the length of this
shortest tour equals minx

{
c1,x + X[r ; x,1]}.

ut ut
Proof of Theorem 5.The proof is done by carefully counting the tours in3-OPT(π).
Since we are dealing with symmetric distance matrices, we will not distinguish between
a permutationφ and its reverse permutation. Lett0, t2, andt3 denote the number of tours
in 3-OPT(π) that differ fromπ in 0, 2 and 3 edges, respectively, and letp0, p2, andp3,
respectively, denote the number of such tours that are inPYRAMID -CV(π). Trivially,
t0 = p0 = 1 holds. If a tourφ differs fromπ in exactly two edges, it results fromπ
by removing twonon-adjacentedges and reconnecting the resulting parts in the only
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possible way. From this and from the fact that every such tour is inPYRAMID -CV(π),
it follows thatt2 = p2 = 1

2n(n− 3) holds.
Next, let us discuss the tours that differ fromπ in exactly three edges. The removal

of three edges fromπ decomposes the tour into three pathsX, Y, andZ such thatπ is
a cyclic shift ofX ? Y? Z. Since we do not distinguish between permutations and their
reverse permutations, we may assume without loss of generality that any permutation
3-OPT(π) that results from the pathsX, Y, and Z and that differs fromπ in exactly
three edges starts with the pathX (after an appropriate cyclic shift). Hence, there are
only four such tours in3-OPT(π):

φ1 = X ? Z− ? Y, φ2 = X ? Z ? Y−, φ3 = X ? Z ? Y, φ4 = X ? Y− ? Z−. (12)

(We do not consider the remaining four toursX ? Y? Z, X ? Y? Z−, X ? Y− ? Z, and
X ? Z− ? Y− since they differ fromπ in at most two edges). Next, distinguish three
cases. (C1). The case where two or more of the pathsX, Y, andZ consist of a single
city is meaningless, as in this case the toursφi differ from π in at most two edges.
(C2). In case exactly one of the three paths consists of a single city, say pathX, then
φ1 andφ2 differ from π in only two edges, andφ3 is the reverse ofφ4. (C3). If all
three paths contain at least two cities, then the four permutationsφ1, φ2, φ3 andφ4
are pairwise distinct. Finally, since there aren(n − 4) possibilities for case (C2) and
1
6n(n− 4)(n− 5) possibilities for case (C3), we get thatt3 = 1

3n(n− 4)(2n− 7).
What aboutp3? First, observe that every tour that results from case (C2) is in

PYRAMID -CV(π). Observe thatπ = Y? Z ? X (remember thatPYRAMID -CV looks
at all cyclic shifts) and consider the cyclic shiftφ′1 = Y ? X ? Z− of φ1. With this,
it is easy to see thatφ1 is contained inPYRAMID -CV(π). By similar arguments, one
gets that alsoφ2 andφ4 are contained inPYRAMID -CV(π). Summarizing, this then
yields p3 ≥ 1

2n(n− 4)(n− 3) and the statement of the theorem follows from a simple
calculation.

ut ut
Proof of Theorem 6.This proof is done by straightforward dynamic programming. For
every i , j with 1 ≤ i ≤ j ≤ n and for everya,b with i ≤ a,b ≤ j , we introduce
the valueX[i , j ; a,b] as follows:X[i , j ; a,b] is the length of the shortest Hamiltonian
path through the cities in{i , i + 1, . . . , j } that starts ina, that ends inb, and that forms
a twisted sequence for the cities in{i , i + 1, . . . , j }. Our goal is to compute all such
valuesX[i , j ; a,b]. These values are computed in the order of increasing value ofj − i .

Clearly, we may setX[i , i ; i , i ] := 0, X[i , i + 1; i , i + 1] := ci,i+1, X[i , i + 1;
i + 1, i ] := ci+1,i for 1≤ i ≤ n− 1. Moreover, all other valuesX[i , j ; a,b]with a = b
are set to∞. For j ≥ i + 2 anda< b, we compute

X[i , j ; a,b] = min
k,e, f

{
X[i , k; a,e] + X[k+ 1, j ; f,b] + ce, f |

a ≤ k ≤ b− 1, i ≤ e≤ k, k+ 1≤ f ≤ j } , (13)

and for j ≥ i + 2 anda> b, we compute in a symmetric way

X[i , j ; a,b] = min
k,e, f

{
X[k+ 1, j ; a,e] + X[i , k; f,b] + ce, f |

b≤ k ≤ a− 1, k+ 1≤ e≤ j, i ≤ f ≤ k } . (14)
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The intuition behind these formulas is as follows: In every interval representation of
a twisted sequence for{i , i + 1, . . . , j }, there must exist ak, i ≤ k ≤ j − 1, such that
either none of the intervals does contain{k, k+ 1} or only the interval[i , j ] contains
{k, k+1}. The formulas (13) and (14) essentially check every possibility for this valuek.

Since there areO(n4) valuesX[i , j ; a,b] that are to be computed, and since every
value is computed inO(n3) time via (13) and (14), the overall computation time is
O(n7). Finally, note that the shortest TSP tour for{1, . . . ,n} in TWISTED decomposes
into a single edge(x,1) and into a shortest Hamiltonian path through{1, . . . ,n} that
starts in city 1 and ends in cityx, for an appropriate cityx. Hence, the length of this
shortest tour equals minx

{
c1,x + X[1,n; x,1]}.

ut ut
Proof of Theorem 7.Let N be an exponential neighborhood that can be searched
in time f(n) with respect to the TSP. Then while searching throughNn, the search
algorithm considers at mostf(n) of the2(n2) distances between then cities. Construct
an undirected graphG whose vertices are the cities and that contains exactly those
O( f(n)) edges that are considered by the search algorithm. Let deg(i) denote the degree
of city i in G.

Clearly, the number of Hamiltonian cycles inG is an upper bound on|Nn|. In
a Hamiltonian cycle, there are at most deg(i) possibilities for the successor city of cityi .
Hence we get that

|Nn| ≤
n∏

i=1

deg(i) ≤
(

1

n

n∑
i=1

deg(i)

)n

≤
(

2

n
f(n)

)n

, (15)

where we applied the arithmetic-geometric mean inequality. This proves the theorem.
ut ut

B. Appendix: Proofs of the theorems on the QAP

Proof of Theorem 8.The proof is done by a reduction from the NP-completeMAX

CUT problem (cf. Garey and Johnson [13]). TheMAX CUT problem takes as input an
undirected simple graphG = (V, E) and a numberq, and asks whether there exists
a partitionV = V1 ∪ V2 of the nodes such that at leastq of the edges inE have their
endpoints in different parts of the partition.

Let k = |V| + |E| and setn = 2k. The matricesA and B are both symmetric
n× n matrices with zeroes on the main diagonal, and thus it is sufficient to specify the
entries above their main diagonals. The first 2|V| rows (and by symmetry, columns) in
matricesA and B correspond to the nodes ofG, and the last 2|E| rows and columns
correspond to the edges inG. More precisely, for 1≤ i ≤ |V|, the two rows 2i − 1 and
2i correspond to thei th node, and for 1≤ j ≤ |E|, the two rows 2|V| + 2 j − 1 and
2|V| + 2 j correspond to thej th edge. In the definition ofA andB, we will put copies
of the 2× 2 matrices

M1 =
(

1 0
0 1

)
M2 =

(
0 1
1 0

)
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at the crossings of the two rows 2i − 1 and 2i with the two columns 2|V| + 2 j − 1 and
2|V| + 2 j , in case thei th node is incident to thej th edge. With this, matrixA is defined
as follows: For every pair(i , j) such that thei th node is incident to thej th edge, put the
2× 2 matrix M1 at the crossing of the two rows 2i − 1 and 2i with the two columns
2|V| + 2 j − 1 and 2|V| + 2 j . All other entries above the main diagonal ofA are set
to 0. Matrix B is defined as follows: For every edge, put the matrixM1 at one crossing,
and the matrixM2 at the other crossing of the two columns corresponding to this edge
with the rows corresponding to the two incident nodes. All other entries above the main
diagonal ofB are set to 0.

We show that the instance ofMAX CUT has answer “Yes” if and only if there exists
a permutationπ ∈ TWIN such thatQAP(A, B, π) takes a value of at most 2|E| − 2q.
First, assume that the instance ofMAX CUT has answer “Yes”, i.e. that there exists
a partitionV = V1 ∪ V2 of the nodes such that at leastq of the edges inE have their
endpoints in different parts of the partition. Define the permutationπ as follows: If
the i th node is inV1, then defineπ(2i − 1) = 2i − 1 andπ(2i) = 2i , and if thei the
node is inV2, then defineπ(2i − 1) = 2i andπ(2i) = 2i − 1. If the j th edge is in
the cut, then defineπ(2|V| + 2 j − 1) andπ(2|V| + 2 j) in such a way that these two
columns contribute 0 to the objective function. If thej th edge is not in the cut, then define
π(2|V|+2 j−1) = 2|V|+2 j−1 andπ(2|V|+2 j) = 2|V|+2 j ; the contribution of these
two columns to the objective function will be 2. It can be verified thatπ ∈ TWIN and
thatQAP(A, B, π) is at most 2|E| − 2q. Next, assume thatQAP(A, B, π) ≤ 2|E| − 2q
for someπ ∈ TWIN. Define a partition ofV = V1∪V2 such that thei th node is inV1 if
π(2i) = 2i , and otherwise inV2. It can be verified that the cut defined by this partition
is crossed by at leastq edges inE.

ut ut

Proof of Theorem 9.The proof is done by a straightforward reduction from the standard
QAP. Let then×n matricesA andB form an input for the standard quadratic assignment
problem. Define 2n × 2n matricesA′ and B′ as follows: For 1≤ i , j ≤ n, define
a′2i,2 j = ai j andb′2i,2 j = bi j . For 1≤ i , j ≤ 2n, definea′i j = b′i j = 0 if i or j is odd. It
is easy to prove that the minimum of the functionQAP(A, B, π) over all permutations
π ∈ Sn equals the minimum of the functionQAP(A′, B′, π ′) over the permutations
π ′ ∈ ASSIGN.

ut ut

Proof of Theorem 10(i) and (ii).We only give the proof for statement (i). Correctness of
statement (ii) easily follows along the same construction. The proof of (i) is done by a re-
duction from the NP-completeEQUIPARTITION problem (cf. Garey and Johnson [13]).
The EQUIPARTITION problem takes as input 2k positive integersx1, x2, . . . , x2k and
asks whether there exists a setI ⊆ {1,2, . . . ,2k}, |I | = k, such that

∑
i∈I xi =∑i 6∈I xi .

Setn = 2k and define then× n matrix A = (ai j ) by ai j = xi · xj for 1 ≤ i , j ≤ 2k.
Define matrixB by bi j = 1 for 1≤ i , j ≤ k andk+ 1 ≤ i , j ≤ 2k, and bybi j = −1,
otherwise. We show that the instance ofEQUIPARTITION has answer “Yes” if and only
if there existsπ ∈ PYRAMID such thatQAP(A, B, π) takes a non-positive value.
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First, assume that there exists a permutationπ ∈ PYRAMID such thatQAP(A, B, π)
take a value≤ 0. Then the equation

0 ≥ QAP(A, B, π) =
n∑

i=1

n∑
j=1

xπ(i)xπ( j)bi j =
 ∑

i :π(i)≤k

xπ(i) −
∑

i :π(i)>k

xπ(i)

2

(16)

holds, and hence the index setI = {π(i) : π(i) ≤ k} yields a solution of theEQUIPARTI-
TION instance. Next, assume that the instance ofEQUIPARTITION has answer “Yes”, i.e.
that there exists a setI ⊆ {1,2, . . . ,2k}, |I | = k, such that

∑
i∈I xi =∑i 6∈I xi . By sym-

metry we may assume that 1∈ I . Define the permutationπ = 〈y1, . . . , yk, z1, . . . , zk〉
where theyi are the elements ofI put into increasing order, and where thezi are the
elements of{1,2, . . . ,2k} \ I put into decreasing order. Thenπ ∈ PYRAMID and
QAP(A, B, π) = 0.

ut ut
Proof of Theorem 10(iii).This proof is done by modifying the proof of Theorem 8 in
a straightforward way. First we observe thatTWIN ⊆ TWISTEDholds. Next, we consider
the symmetricn×n matricesAandB that are constructed in this NP-completeness proof:
Both are 0-1 matrices with zeroes on the main diagonal, and hence 0≤ QAP(A, B, π) ≤
n2 − n holds. We define matricesA′ andB′ by changing the main diagonals ofA and
B in the following way:a′2i−1,2i−1 = a′2i,2i = n2i andb′2i−1,2i−1 = b′2i,2i = n2n−i . It
is easy to verify that for anyπ ′ ∈ TWIN, the contribution of the main diagonal entries
to the objective functionQAP(A′, B′, π ′) equalsn32n, whereas for anyπ ′ 6∈ TWIN, the
contribution of the main diagonal entries will be at leastn32n+n2. From this we conclude
that the problem of minimizingQAP(A, B, π) over the permutationsπ ∈ TWIN and
the problem of minimizingQAP(A′, B′, π ′) over the permutationsπ ′ ∈ TWISTED both
take their minima at the same permutations.

ut ut
Proof of Theorem 10(iv).Let us introduce a subsetAUX of the Jordan permutations
over{1,2, . . . ,6k}. A permutationπ is in AUX6k if and only if

{π(3i − 2), π(3i)} = {3i − 2, 3i } for i = 1, . . . ,2k, and

π(3i − 1) = 3i − 1 for i = 1, . . . ,2k.

In other words, every triple 3i −2, 3i −1, 3i of cities must occur at the positions 3i −2,
3i − 1, and 3i of the permutation, and it must either occur in precisely this ordering or
in the reverse ordering. It is not hard to see thatAUX6k ⊂ JORDAN6k holds.

For the NP-completeness proof, we modify the proof of Theorem 8 in a similar
way as we did in the proof of Theorem 10(iii). Again, we start with the symmetric
n × n matricesA and B that are constructed in the proof of Theorem 8. Without loss
of generality, we assume thatn is divisible by 4, i.e.n = 4k. SinceA and B are 0-1
matrices with zeroes on the main diagonal, 0≤ QAP(A, B, π) ≤ n2 − n holds. We
construct 6k× 6k matricesA′ andB′ as follows: We insert between any pair 2i − 1 and
2i of rows (respectively, of columns) a dummy row (respectively, a dummy column)
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that with the exception of the diagonal entry entirely consists of 0-entries. The main
diagonal entries ofA′ andB′ are defined bya′3i−2,3i−2 = a′3i−1,3i−1 = a′3i,3i = 3i and

b′3i−2,3i−2 = b′3i−1,3i−1 = b′3i,3i = n3n−i , for i = 1, . . . ,2k. It can be verified that for
anyπ ′ ∈ AUX, the contribution of the main diagonal entries to the objective function
QAP(A′, B′, π ′) equalsn33n, whereas for anyπ ′ ∈ JORDAN \AUX, the contribution of
the main diagonal entries will be at leastn33n + n2. With this, the problem of solving
the QAP forA′ andB′ over the permutations inJORDAN boils down to the NP-complete
problem of solving the QAP forA andB over the permutations inTWIN.

ut ut
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